Name:
Instructions: No calculators. Use provided scrap. Write your fully simplified answers in the space provided.

1. For a function $f(x)$ write down the formula for its linearization at $a . L(x)=$ \qquad
2. Suppose $y=f(x)$, find the differential $d y=$ \qquad
3. A pebble is dropped into a calm pond, causing ripples in the form of concentric circles. The radius r of the outer ripple is increasing at a rate of π feet per second. At what rate is the total area A of disturbed water changing when $r=2$?
(a) The equation I used (before differentiating) is \qquad
(b) After differentiating, I have \qquad
(c) The rate of change of A is (state your answer as an equation involving a derivative): \qquad
4. Use linear approximation or differentials to approximate $(8.1)^{2 / 3}$ by completing the following:
(a) Define a function to use: $f(x)=$ \qquad
(b) $x=$ \qquad , $a=$ \qquad
(c) The general formula (in f) used to make the approximation \qquad
(d) The approximate value is \qquad

Bonus (Complete the other problems to be eligible):

1. For a function $f(x)$, define "critical number of f "
2. Suppose a function is defined on a closed interval $[a, b]$, define the "absolute minimum of f on $[a, b]$ "
