
MATHE 4800C FOUNDATIONS OF ALGEBRA AND GEOMETRY

CLASS NOTES

FALL 2011

MATTHEW AUTH, LECTURER OF MATHEMATICS

1. Foundations of Euclidean Geometry (Week 1)

During the first weeks of the semester we will discuss the content of Greek math-
ematics described in the ”Elements”. We will not study the ”Elements” directly,
although I do encourage you to glance at it from time to time (I’ve included a
link to a translation of the ”Elements” on our class site). Instead we will study
Kiselev’s ”Planimetry” a relatively modern classroom friendly geometry book that
follows the spirit of the ”Elements” but does not adhere rigorously to the axiomatic
approach.

The ”Elements” were written by the Greek mathematician Euclid in approxi-
mately 300 B.C. Learning the foundations of geometry by reading the ”Elements”
can be intimidating because the quantity and quality of its theorems. One if often
left wondering how any one person was able to discover them all. Indeed, Euclid
did not prove most of the theorems from the ”Elements” himself. He collected them
from many generations of mathematicians. Unfortunately for anyone reading the
elements this makes it is impossible to determine what motivated the geometers
who first thought about the results contained inside. Little is known of Euclid’s life
and motivations as well.

What is most impressive about Euclid’s ”Elements” is the manner in which
Euclid presented the theorems. He did not lay them down haphazardly but instead
arranged them in such an intricate fashion that the ”Elements” are considered one
of man’s most profound and far-reaching written achievements.

Euclid started by assuming five supposedly self-evident geometric facts without
proving them. He called these facts axioms (or postulates) to distinguish them from
theorems which were not necessarily self-evident and required proof. An example
of an axioms is ”two points determine a line”. Euclid then combined the axioms
with logic (his common notions) and started to prove theorems. Furthermore,
after proving a theorem, Euclid used that theorem together with the axioms and
common notions in order to prove still more theorems . . . This is Euclid’s method,
the axiomatic method. (I suggest that you read the axioms and common notions
in Book 1 of Euclid’s text. There is a link to a translated version on our website.
You should be warned that this translation uses the word proposition instead of
the word theorem used in our translation of ”Planimetry”)

Using the axiomatic method Euclid quickly and efficiently established theorems
which are not at all self-evident. Whenever you find a statement that is not evident
while reading Euclid or a similar geometry text like Kiselev’s ”Planimetry” you can
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repeatedly skim back in the text to verify the theorems which are used to prove the
confusing statement until you are satisfied with the explanation. If you skim back
far enough, you return to the axioms whose truth you agreed to accept without
verification at the beginning of the text.

I believe that it is appropriate for all students to study the axiomatic method,
even students who may not be interested in geometry. By working within the
axiomatic system introduced in the ”Elements” students learn a method used to
organize information coherently and efficiently in many subjects. From time to time
economists, physicists, and others adopt the blueprint, provided first by Euclid,
for using logic to make complex predictions (theorems) from a limited number of
assumptions (axioms). This is because the human mind is limited in its ability
to store and digest large collections of complex facts. A person schooled in the
axiomatic method need only remember the axioms as well as the logic and then, if
sufficiently talented, can reconstruct the subject herself.

2. The Integers and the Decimal System (Week 2)

While we continue to study the foundations of geometry, we will begin studying
the foundations of algebra this week. The goal is to use the five laws (or axioms) of
arithmetic found on p.5 of Courant’s text to describe the multiplicative algorithm
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taught in middle school.
In order to understand how this works it can be helpful to work out a few

multiplication and a few division problems using an alternate system to the familiar
decimal system. The reason for this is that it is more difficult to rely on memorized
habits which can hinder true understanding when using an alternate system. I have
therefore assigned some problems using the binary (dyadic) system in your weekly
homework.

I will not give as much guidance this week. I hope that you can use the principles
we have established while studying the foundations of geometry as well as your
experience doing basic algebra to describe some of the foundations of algebra.
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3. The Congruence Tests SAS, ASA, and SSS (Week 3)

This week we describe how to prove the three congruence tests for triangles
using the foundational principle, ”Two geometric figures are equivalent if one can
be superimposed onto the other by a rigid motion”. This congruence principle is
so appealing because it is intuitive. However there is a price to pay for elegance.
It is difficult to provide purely logical arguments to prove the Congruence Tests as
theorems. Even Euclid slipped up while proving the Congruence Tests by making
assumptions about rigid motions that do not follow convincingly from the axioms.
This can all be fixed quite easily today using linear algebra but we will not study
linear algebra at this time.

Instead you should pay particular attention to the arguments given in sections
5 and 6 of Chapter 1 of Kiselev’s text. Like Euclid’s proofs these arguments about
superimposing shapes are not as convincing as other arguments in Kiselev’s text.

4. Parallel Lines (Week 4)

We introduce parallel lines and parallelograms this week. Along the way we
prove the famous theorem that sum of the angles of a triangle is 180◦. As we
progress through Kiselev’s text, the theorems and exercises become less intuitive;
we may even find ourselves questioning their plausibility. Fortunately at this stage
the proofs become more convincing.

Once we have accepted the Congruence Tests as proved we can often use them to
prove less intuitive assertions. One other result that is often used in these sections
is the Exterior Angle Theorem for triangles. It is proved using SAS. You should
familiarize yourself with it as well as how it is used to prove results about parallel
lines.

5. Rational and Irrational Numbers (Week 5)

We return to study the foundations of algebra in Courant’s text this week. While
you read the text pay particular attention to how and why the number concept
was developed, from the natural numbers, to the integers, to rationals and then
irrationals. This may all seem quaint or obvious because you are familiar with
algebraic computations. Do not be fooled. The development of the number concept
will not seem obvious to your students. Moreover, as you work through the weekly
homework assignment, you may find that things you thought were obvious are not.

Today we use many powerful computational techniques like long division in order
to manipulate numbers. These techniques open mathematical avenues to students
that were at one time closed. However you should not confuse the techniques with
true a understanding of numbers.

I will provide two examples of how understanding a technique is insufficient to
understand numbers.

The first concerns the rule for adding fractions

a

b
+

c

d
=

ad+ bc

bd
.

It is one thing to be able master the technique of adding fractions by completing
many exercises; it is another thing to understand the rule itself. Here is a long
winded explanation that I do not advise using with young students.
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At some point students in grade school begin to solve equations like

3× 12 = x

for x. These students have previously memorized their multiplication tables so find-
ing the solution is routine. They just need to get used to the letter x appearing in an
equation. After awhile, when they are properly motivated, the teacher rearranges
the equation so that it becomes

3× x = 12.

Again the students can solve it by returning to their multiplication tables and in-
verting the operation. (Note that they are not required to independently memorize
a division table; that would be too much work when they can divide using the
multiplication table. Math may be difficult at times but it sure is efficient.)

However when the teacher rearranges the equation again

x× 12 = 3,

students can no longer solve it by returning to the multiplication table. They’re
stuck. The students can either state that such equations have no solutions or they
can create a new number x = 1

4 . It is easier, of course, to claim that these ”bad”
equations have no solutions and be done with it. This idea however is quickly
abandoned when one realizes that it is often necessary to divide quantities. The
students are then resigned to accept 1

4 as a number.

There is a steep price to pay for doing this. Students cannot accept 1
4 alone.

They must accept every expression of the form a
b
as a number, a rational number,

when a and b 6= 0 are integers. They must subsequently learn how to add, subtract,
multiply, and divide these rational numbers in such a way that they do not break
any of the original laws of algebra. The key idea is that the algebraic rules for
operating with integers should not be broken.

This takes a lot of time. A good part of the middle school math curriculum is
dedicated to learning how to manipulate fractions. I have assigned a homework
problem asking you finish this explanation and to explain how one attempt to add
fractions breaks the laws of algebra.

The second example is about exponents. Suppose that a student approaches you
and asks you why does 70 = 1? Here is one answer that you could give that uses
the laws of algebra. You could explain to the student that 75 = 7 · 7 · 7 · 7 · 7 and
73 = 7 · 7 · 7 by definition. So

75 · 73 = (7 · 7 · 7 · 7 · 7) · (7 · 7 · 7) = 78.

After playing around with examples like these for a little while you can convince
the student that they are examples of a general multiplication law: am ·an = am+n.

This is all easy to follow. Then you show the student a few examples like

75

73
=

7 · 7 · 7 · 7 · 7

7 · 7 · 7
=

7 · 7 · 7

1
= 72.

You convince her that there is also a division law: am

an
= am−n. Finally you ask

what is 73

73 ? Clearly 73

73 = 1. However, using the division law 73

73 = 73−3 = 70. There

are two choices at this point. She either must state that 70 = 1 or she must throw
out the division law. But we don’t want to throw out the division law; we want it
to be true. The basic examples leading to the division law have a link to reality.
So 70 = 1.
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6. Circles

In addition to this weeks readings you may find it helpful to play around with
some geometrical software like sketchpad (costs money) or geoGebra (free). I will
create a link to geoGebra on our website.

7. Isometries (Week 10)

During the last two weeks of the course we will study rigid motions (or as we
have called them: superpositions). Rigid motions have already played a big role in
our course. In the first week we defined two geometric shapes to be congruent if
there is a rigid motion from one to the other.

In the following we will denote the xy-plane by R
2.

Definition. A mapping F of the plane F : R2 → R
2 is a function whose domain

and range are both points P (x, y) in the plane R
2.

Example. (1) T(1,2), Translation by the vector (1, 2) is a map of the plane.
(2) m, mirror reflection over the x-axis is a map of the plane.
(3) R60◦ , rotation by 60◦ counterclockwise about the origin is a mapping of the

plane.
(4) px, projection onto the x-axis is a mapping of the plane.

Definition. An isometry (also known as a rigid motion, or in our class as a superposi-
tion) is a mapping of the plane that preserves distance, i.e. a mapping F : R2 → R

2

in which for any points P and Q in the plane d(F (P ), F (Q)) = d(P,Q).

Example. All the above examples of mappings are rigid motions except px because
px maps P (2, 3) and Q(2, 11) to px(P ) = px(Q) = (2, 0). Thus d(px(P ), px(Q) =
0 6= 8 = d(P,Q).

Our goal in studying isometries is to develop an ”algebra” of isometries. This
may sound strange at first but thinking this way has its advantages. For one, if
we can do ”algebra” with rigid motions then we will be able to apply some of our
knowledge of algebra to geometry problems. This is a powerful idea, and a big part
of our course.

The first thing we want to do is to be able to ”multiply” isometries, whatever
that may mean. We do this by composing functions. It is not hard but you should
practice with the homework problems in order to get good at it.

Definition. Two isometries of the plane F1 and F2 can be combined to form a new
isometry F1F2 so that F1F2(P ) = F1 ◦ F2(P ) = F1(F2(P )).

Exercise. Given isometries F1 and F2. Prove that the mapping F1F2 defined above
is truly an isometry.

Example. (1) R60◦R45◦ = R105◦ .

(2) T(5,2)T(11,−6) = T(16,−4).

(3) R90◦T(4,0) = RS,90◦ when RS,90◦ is a rotation of 90◦ about the point
S(−2, 2).

The reason that we call composition of rigid motions ”multiplication” and not
”addition” is that traditionally ”additive” operations are reserved for commuta-
tive operations. Compositions of isometries is not commutative as can be seen
by reversing the order of the last example. T(4,0)R90◦ = RQ,90◦ when Q(2, 2).
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So R90◦T(4,0) 6= T(4,0)R90◦ . You should therefore be careful when working with the
algebra of isometries; the algebra of isometries is different from our familiar algebra.

The following theorem which will be proved in class can be very helpful.

theorem 1. An isometry is completely determined by where it takes three nonlinear
points.

This theorem can be used for instance in determining that R90◦T(4,0) = RS,90◦

whenRS,90◦ is a rotation of 90◦ about the point S(−2, 2). First verify thatR90◦T(4,0)(S) =
S. In this case we say that S is a fixed point of the rigid motion R90◦T(4,0). Once
we have a fixed point, we can judiciously pick two other points, in this case say
P (−2, 0 and Q(0, 2), in the plane to verify that R90◦T(4,0) is indeed a rotation. Try
to do this.

Even though multiplication of isometries is not the same as multiplication of
numbers there are a few more similarities that ought to be mentioned. The first
is the existence of a multiplicative identity element. In grade school we learn that
there is a special number 1 that when multiplied by any other number does not
change the other number, i.e 1 · 16 = 16. There is an analogous rigid motion
I(P ) = P, called the identity.

Example. IR90◦ = R90◦I = R90◦

After we have I and multiplication we can talk about dividing isometries.

Definition. Given an isometry F of the plane. An isometry G is called the inverse

of F if GF = FG = I. When this is so, we write G = F−1 (or we could equally
write F = G−1.

Example. (1) T−1
(1,2) = T(−1,−2).

(2) R−1
130◦ = R230◦ = R−130◦

(3) m−1
y=x = my=x when my=x is the mirror reflection about the line y = x.

Finally, after we learn to multiply, we try to factor isometries like numbers.
Eighteen can be factored into primes as 18 = 32 · 2 just like the rotation RS,90◦

by 90◦ about the point S(−2, 2) can be factored into a rotation about the origin
multiplied by a translation RS,90◦ = R90◦T(4,0). We may think that it is possible
to factor an isometry uniquely into primes but it is not clear how to do this as the
following theorems indicate. The theorems will be proved in class.

theorem 2. Every isometry F of the plane can be factored as F = TvR when Tv is
a translation by vector v, and R is some isometry that fixes the origin O(0, 0).

We can still do better, and learn more, by factoring the rigid motion R that
showed up in the previous theorem.

theorem 3. Every isometry F of the plane can be factored into as F = TvRαm or
as F = TvRα where Tv is a translation by vector v, Rα is a rotation about the
origin by α, and m is a mirror reflection about the x-axis.

With this theorem as well as our knowledge of the complex numbers, we can
write formulas for rigid motions as we write formulas for functions in high school
like f(x) = 3x2+1 where x is the independent variable. The rigid motion F = TvRα

can be written as F (z) = (cosα+ i sinα)z + v when z is the independent complex
number or point in the plane.
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Example. The rigid motion R90◦T(4,0) can be written as R90◦T(4,0)(z) = (cos 90◦ +
i sin 90◦)(z+4+0i) = i(z+4). Use this formula to find the fixed points of R90◦T(4,0)

i.e. the points z so that R90◦T(4,0)(z) = z or with our formula i(z + 4) = z. You
should find z = −2 + 2i which is the point S(−2, 2). This is one way to find that
R90◦T(4,0) = RS,90◦ .

The next theorem is a bit harder but you should be able to prove a version of it.

theorem 4. Every rigid motion F of the plane can be factored as the product of
three reflections m1, m2 and m3 i.e. F = m1m2m3.

You should also think about the following facts (they are not easy to verify
geometrically):

(1) The composition (multiplication) of two rotations RP,αRQ,θ is, in general,
another rotation RK,α+θ. When is the composition of two rotations is a
translation?

(2) The composition of two mirror reflections is a rotation or a translation.
(3) The composition of a translation and a rotation is a rotation with the same

angle and, in general, a new center.
(4) The composition of a mirror reflection with a rotation is a mirror reflection.
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