You have 2hr 15min. Answer each non-graph question neatly on the line provided.
Name: \qquad

1. (10 points) Find all solutions to

$$
\left\{\begin{array}{l}
x_{3}+x_{4}=0 \tag{1}\\
x_{2}+x_{3}=0 \\
x_{1}+x_{2}=0 \\
x_{1}+x_{4}=0
\end{array} .\right.
$$

1. \qquad
2. (5 points) (True/False) There exists a 4×3 matrix A of rank 3 so that $A\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\overrightarrow{0}$.
3. \qquad
4. (5 points) Interpret the linear transformation

$$
T(\vec{x})=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right] \vec{x}
$$

geometrically.
4. (10 points) Find the inverse of $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1\end{array}\right]$.
4.
5. (10 points) Find which value(s) of the constant k do the vectors $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 4\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 4 \\ k\end{array}\right]$ form a basis of \mathbb{R}^{4}.
5. \qquad
6. (10 points) Find the matrix B of the linear transformation $T(\vec{x})=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right] \vec{x}$ with respect to the basis $\mathfrak{B}=\left(\vec{v}_{1}=\left[\begin{array}{l}1 \\ 3\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right)$.
6. \qquad
7. (5 points) (TRUE/FALSE) $T(f(t))=\int_{-2}^{3} f(t) d t$ is an isomorphism from P_{2} to \mathbb{R}.
7. \qquad
8. (10 points) Find an orthonormal basis of the plane $x_{1}+x_{2}+x_{3}=0$.
8. \qquad
9. (10 points) Find a linear function of the form $f(t)=c_{0}+c_{1} t$ to the data points $(0,0),(0,1),(1,1)$ using least squares.
9. \qquad
10. (5 points) Evaluate det $\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 4 & 0 & 0 & 0\end{array}\right]$.
10. \qquad
11. (5 points) (TRUE/FALSE) If the determinant of a 4×4 matrix is 4 then its rank must be 4 .
11. \qquad
12. (10 points) Diagonalize $A=\left[\begin{array}{ll}2 & 0 \\ 3 & 4\end{array}\right]$.
12. \qquad
13. (5 points) Find an orthonormal eigenbasis for $A=\left[\begin{array}{ll}6 & 2 \\ 2 & 3\end{array}\right]$.
13. \qquad
14. (5 points) Find the definiteness of the quadratic form $q\left(x_{1}, x_{2}\right)=x_{1}^{2}+4 x_{1} x_{2}+x_{2}^{2}$.
14. \qquad
15. (5 points) Find the singular values of $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
15. \qquad

