Draft Final Exam

You have 2hr 15min. Answer each non-graph question neatly on the line provided.

Name: _

- 1. (10 points) Find all solutions to
- $\begin{cases} x_3 + x_4 = 0\\ x_2 + x_3 = 0\\ x_1 + x_2 = 0\\ x_1 + x_4 = 0 \end{cases}$ (1)

2. (5 points) (True/False) There exists a 4×3 matrix A of rank 3 so that $A\begin{bmatrix} 1\\2\\3 \end{bmatrix} = \vec{0}$.

3. (5 points) Interpret the linear transformation

$$T(\vec{x}) = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \vec{x}$$

geometrically.

- 4. (10 points) Find the inverse of $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1 \end{bmatrix}.$
- 5. (10 points) Find which value(s) of the constant k do the vectors $\begin{bmatrix} 1\\0\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\4 \end{bmatrix}, \begin{bmatrix} 2\\3\\4\\k \end{bmatrix}$ form a basis of \mathbb{R}^4 .

6. (10 points) Find the matrix *B* of the linear transformation $T(\vec{x}) = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \vec{x}$ with respect to the basis $\mathfrak{B} = (\vec{v}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}).$

7. (5 points) (TRUE/FALSE) $T(f(t)) = \int_{-2}^{3} f(t)dt$ is an isomorphism from P_2 to \mathbb{R} .

1. _____

2. _

6. _____

7._____

5. _____

- 8. (10 points) Find an orthonormal basis of the plane $x_1 + x_2 + x_3 = 0$.
- 9. (10 points) Find a linear function of the form $f(t) = c_0 + c_1 t$ to the data points (0,0), (0,1), (1,1) using least squares.

0 0 0 4	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 2 \\ 0 \\ 0 \\ 0 \end{array} $	$\begin{bmatrix} 0 \\ 0 \\ 3 \\ 0 \end{bmatrix}$		
	$\begin{bmatrix} 0\\ 0\\ 0\\ 4 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 4 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \\ 4 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 4 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 4 & 0 & 0 & 0 \end{bmatrix}.$

11. (5 points) (TRUE/FALSE) If the determinant of a 4×4 matrix is 4 then its rank must be 4.

12. (10 points) Diagonalize $A = \begin{bmatrix} 2 & 0 \\ 3 & 4 \end{bmatrix}$.

13. (5 points) Find an orthonormal eigenbasis for $A = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix}$.

14. (5 points) Find the definiteness of the quadratic form $q(x_1, x_2) = x_1^2 + 4x_1x_2 + x_2^2$.

15. (5 points) Find the singular values of $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

10. _____ 11. _____ 12. _____ 13. _____ 14. _____ 15. _____

8. _____

9. _____