

Name: \qquad ID: \qquad

1. (5 points) Perform the indicated operations $\left(6+\frac{1}{3}\right)\left(\frac{1}{2}-\frac{3}{4}\right)$ and simplify completely as one fraction.
2. \qquad
3. (5 points) True or False: $\frac{9}{40} \geq \frac{4}{9}$.
4. \qquad
5. (5 points) Evaluate $\left(\frac{2}{5}\right)^{-3}$ and simplify completely without negative exponents.
6. \qquad
7. (5 points) Factor $2 x^{2}-2 x-24$ completely.
8. \qquad
9. (5 points) Perform the operations $x^{\frac{3}{2}}\left(10 \sqrt{x}+\frac{2}{\sqrt{x}}\right)$ and simplify.
10. \qquad
11. (5 points) Expand $\left(\sqrt{u}+\frac{1}{\sqrt{u}}\right)^{2}$ and simplify completely.
12.
13. (5 points) Find the domain $\frac{\sqrt{x-4}}{x^{2}-25}$.
\qquad
14. (5 points) Simplify $\left(-7 z^{5}\right)^{2}\left(3 z^{3}\right)$ and eliminate any negative exponents.
15. \qquad
16. (5 points) Perform the operation $\frac{x^{2}+2 x-15}{x^{2}-2 x-15} \cdot \frac{5-x}{x+5}$ and simplify completely.
17. \qquad
18. (5 points) Add $\frac{3 x}{x^{2}-16}+\frac{1}{x-4}$ and then simplify as one reduced fraction.
19.
20. (5 points) Solve $4 x^{2}-156=0$.
21. \qquad
22. (5 points) Find all real solutions x to $\sqrt{4 x-2}=2$.
23. \qquad
24. (5 points) Solve $|3 x+4|=1$.
25. \qquad
26. (5 points) Solve $\frac{4}{x}<x$. Express your answer in interval notation.
27. \qquad
28. (5 points) Sketch the graph of the piecewise defined function

$$
f(x)= \begin{cases}3 x & \text { if } x<0 \\ x^{2} & \text { if } x \geq 0\end{cases}
$$

16. (5 points) Find an equation of the line passing through the points $(-1,2)$ and parallel to the x-axis.
17. \qquad
18. (5 points) Find an equation of the circle with center at the origin that passes through $(4,7)$.
19. \qquad
20. (5 points) Find the net change of $f(x)=\frac{1}{x}$ between $x=-1$ and $x=-1+h$.
21. \qquad
22. (5 points) Use the graph of f
 between $x=0$ and $x=3$.
to find its average rate of change betwe $x=0$ and $x=3$.
23. \qquad
24. (5 points) Make a rough sketch of the graph $y=\frac{x}{|x|}$.
