Name: \qquad ID: \qquad

1. (5 points) Solve the system $\left\{\begin{array}{l}2 x_{1}+4 x_{2}+6 x_{3}=0 \\ 4 x_{1}+5 x_{2}+6 x_{3}=3 \\ 7 x_{1}+8 x_{2}+9 x_{3}=6\end{array}\right.$
2. \qquad
3. (5 points) Find a redundant column of $A=\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]$ and write it as a linear combination of preceding columns.
4. \qquad
5. (5 points) Find all solutions of the system $\left\{\begin{array}{ll}x+2 y & =a \\ 3 x+5 y & =b\end{array}\right.$ for arbitrary constants a and b.
6. \qquad
7. (5 points) Find all the vectors in \mathbb{R}^{3} perpendicular to $\left[\begin{array}{l}3 \\ 0 \\ 3\end{array}\right]$.
8. \qquad
9. (5 points) For which value(s) of c is $\left[\begin{array}{l}3 \\ 5 \\ c \\ 9\end{array}\right]$ a linear combination of $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$?
10. \qquad
11. (5 points) (True/False) The rank of the matrix $\left[\begin{array}{ccc}-1 & -1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]$ is 1.
12. \qquad
13. (5 points) Find the inverse of the linear transformation $\begin{cases}y_{1} & =x_{1}+7 x_{2} \\ y_{2} & =3 x_{1}+20 x_{2} .\end{cases}$
14.
15. (5 points) Find vectors that span the image of $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$. Give as few vectors as possible.
16. \qquad
17. (5 points) Describe $T(\vec{x})=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ geometrically in detail. (HINT: Sketch the image of the standard L shape under T.)

9.

\qquad
10. (5 points) Let L be the line in \mathbb{R}^{3} that consists of all scalar multiples of the vector $\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$. Find the orthogonal projection of the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ onto L.
10. \qquad
11. (5 points) Find vectors that span the kernel of $\left[\begin{array}{ll}2 & 3 \\ 6 & 9\end{array}\right]$.
11. \qquad
12. (5 points) Evaluate $\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 2 & 1 \\ 1 & 1\end{array}\right]$.
12. \qquad

