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PREFACE.

THE solution of the general quadratic equation was known as
early as the ninth century; that of the general cubic and quartic
equations was discovered in the sixteenth century. During the suc-
ceeding two centuries many unsuccessful attempts were made to
solve the general equations of the fifth and higher degrees. In 1770
Lagrange analyzed the methods of his predecessors and traced all

“their results to one principle, that of rational resolvents, and proved
that the general quintic equation cannot be solved by rational re-
solvents. The impossibility of the algebraic solution of the general
equation of degree n (n>4), whether by rational or irrational resolv-
ents, was then proved by Abel, Wantzel, and Galois. Out of these
algebraic investigations grew the theory of substitutions and groups.
The first systematic study of substitutions was made by Cauchy
(Journal de Uécole polytechnique, 1815).

The subject is here presented in the historical order of its devel-
opment. The First Part (pp. 1-41) is devoted to the Lagrange-
Cauchy-Abel theory of general algebraic equations. The Second
Part (pp. 42-98) is devoted to Galois’ theory of algebraic equations,
whether with arbitrary or special coefficients. The aim has been
to make the presentation strictly elementary, with practically no
dependence upon any branch of mathematics beyond elementary
algebra. There occur numerous illustrative examples, as well as
sets of elementary exercises.

In the preparation of this book, the author has consulted, in

addition to various articles in the journals, the following treatises;
iii
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Lagrange, Réflexions sur la résolution algébrique des équations;
Jordan, T'raité des substitutions et des équations algébriques; Serret,
Cours d’Algébre supérieure; Netto-Cole, Theory of Substitutions and
its Applications to Algebra; Weber, Lehrbuch der Algebra; Burn-
side, The Theory of Groups Pierpont, Galois’ Theory of Algebraic
Equations, Annals of Math., 2d ser., vols. 1 and 2; Bolza, On the
Theory of Substitution-Groups and its Applications to Algebraic
Equations, Amer. Journ. Math., vol. XIII.

The author takes this opportunity to express his indebtedness
to the following lecturers whose courses in group theory he has at-
tended: Oscar Bolza in 1894, E. H. Moore in 1895, Sophus Lie in
1896, Camille Jordan in 1897.

But, of all the sources, the lectures and publications of Professor
Bolza have been of the greatest aid to the author. In particular,
the examples (§ 65) of the group of an equation have been borrowed
with his permission from his lectures.

The present elementary presentation of the theory is the out-
come of lectures delivered by the author in 1897 at the University
of California, in 1899 at the University of Texas, and twice in 1902
at the University of Chicago.

CHicAGoO, August,.1902
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THEORY OF ALGEBRAIC EQUATIONS.

FIRST PART.

THE LAGRANGE-ABEL-CAUCHY THEORY OF
GENERAL ALGEBRAIC EQUATIONS.

CHAPTER 1.

SOLUTION OF THE GENERAL QUADRATIC, CUBIC, AND QUARTIC
EQUATIONS. LAGRANGE’S THEOREM* ON THE IRRATION-
ALITIES ENTERING THE ROOTS. °

1. Quadratic equation. The roots of z?+pzr+qg=0 are
x1=%(—p+\/g—4q), z,=4(—p—Vp'—49).

By addition, subtraction, gld multiplication, we &t

z+x,=—p, xn—xz=\/p2_4‘b ,2=q.
Hence the irrationality v/ p?—4q, which occurs in the expressions
for theggoots, is rationally expressible in terms of the rootg, be'mg
equal to z,—x, Unlike the last function, the functions z,+z,
and z,r, are symmetric in the roots and are rational functions of

the coeflicients.
2. Cubic equation. Thqgeneral cubic equat.ion may be written

(1) 23 —c 2+ cx—cy=0.

Setting x=y+4c,, the equation (19 takes the simpler form

(2) o y*+py+4=0,

* Réflexions sur la résolution algébrique des équations, (Euvres de Lagrange,
Paris, 1869, vol. 3; first printed by the Berlin Acaderay, VTTQ-T\..
: L3

o



2 GENERAL QUADRATIC, CUBIC, AND QUARTIC.  [Cm.1

if we make use of the abbreviations

3 p=6—3%¢% g=—ct+icc,—He

The cubic (2), lé,cking the square of the unknown quantity, is
called the reduced cubic equation. When it is solved, the roots
of (1) are found by the relation z=y-+ c,.

The cubic (2) was first solved by Scipio Ferreo before 1505.
The solution was rediscovered by Tartaglia and imparted to
Cardan under promises of secrecy. But Cardan broke his promises
and published the rules in 1545 in his Ars Magna, so that the
formule bear the name of Cardan. The following method of
deriving them is essentially that given by Hudde in 1650. By
the transformation

—z—P
(4) y—Z 32’ L
3 .
the cubic (2) becomes 23—2%3 +¢=0, whence
3
(%) Argr—L —0.

27
Solving the latter as a quadratic equation for 22, we get
#*=—49+VE, R=1g'+rp"
Denote a definite one of the cube roots of —3g++ R by
=
Y/ —3¢+VER.
The other two cube roots are then
/ / —
0¥/ —1g+VR, o’/ -1g+VR,

where w is an imaginary cube root of unity found as follows. The
three cube roots of unity are the roots of the equation

r*—1=0, or (r—1)(r*+r+1)=0.

The roots of r2+r+1=0are —3+3V —3=wand —3— 3V —3=0?
Then
(6) o*+w+1=0, o=l
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In view of the relation
(—3g+VR)(—3g—VR)=1g"—R=— 7",
a particular cube root &/ —3q—~/R may be chosen so that
/ / —
¥/ —3+VR - ¥/ —4—VE=—1p.
 Aea— /___7:
S @/ —W+VE - o Y —1—VE=—1ip,
W/ —3g+VR - 0¥/~ 3g—VE = —1p.

Hence the six roots of equation (5) may be separated into pairs
in such a way that the product of two in any pair is —4p. The

root paired with z is therefore —%, and their sum z—?% is, in

view of (4), a root y of the cubic (2). In particular, the two roots
of a pair lead to the same value of y, so that the siz roots of (5)
lead to only three roots of the cubic, thereby explaining an apparent
difficulty. Since the sum of the two roots of any pair of roots
of (5) leads to a root of the cubic (2), we obtain Cardan’s formulse
for the roots y,, y,, ¥, of (2):

%=~ +VR+Y ~1—VE,
™ y=0¥/ —Yg+VER+e* Y/ —1g-VE,
Ys=0’ ’Q/I—%q+\/l_2+w Q// —1g—-VR.

Multiplying these expressions by 1, w?, w and adding, we get,
by (6),

—_—
Y —3+VE=3(y,+0y, +oyy).
Using the multipliers 1, w, »? we get, similarly,
—_—
Y —3g—VR={(y+wy,+ ')
Cubing these two expressions and subtracting the results, we get
VE=4{(t+ 0%+ wy)*— (U, +0y, + 0%}

V-3 _ - -
. ——1—8—-(% Y2) (Y= Ys) (Ys—Y0)»
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upon applying the Factor Theorem and the identity w—w?=4/ —3.
Hence all the irrationalities occurring in the roots (7) are rationally
expressible in terms of the roots, a result first shown by Lagrange.
The function '
(=% (%—¥s)*(Ys— y1)* = — 27¢* — 4p*
is called the discriminant of the cubic (2).
The roots of the general cubic (1) are

zy=y,t+ic, Z=y,+ic, zT,=Y;+3ic,.
S [y L=Y1— Yy LT3 =Yy— Yy T3 T =Y3—Yy,
(8) (2, —2) (2, — 25) (T3 — 2,) = (4, — ¥2) (Y — Ys) (Y5 — Y1)

18 S v
=7_-_§~/1‘e= -6V =3Vig+ p".

EXERCISES.

1. Show that z, + w?z, + wz; =y, + 0%, + wy;, T, + 0T, + W T, =Y, + WY, + VY.

2. The cubic (2) has one real root and two imaginary roots if >0; three
real roots, two of which are equal, if R=0; three real and distinct roots if
R <0 (the so-called irreducible case).

3. Show that the discriminant (z,—z,)*(z,—z;)%(z;—z,)? of the cubic (1)
equals

’c;? +18c,0,6—4c,® — e, %cy — 27¢,%.
Hint: Use formula (8) in connection with (3).

4. Show that the nine expressions ,Q/'—iq-!-\/ 1-3+Q/’—iq-\/ R, where
all combinations of the cube roots are taken, are the roots of the cubics
Y +py+9=0, y'twpy+g=0, y'+w’py+q=0.

5. Show that y,+4,+4:,=0, Y +Ys+y¥s=p, YYYs=—¢.
6 Show that z,+z,+ 2y =¢,, z,%,+2,%3+2,23=c;, 2,2,T3=c;, using Ex. 5.
How may these results be derived directly from equation (1)?

3. Aside from the factor {, the roots of the sextic (5) are
=2, twz, + 0, =2, twzy+w’s,,
b= =2t wryt0’s, =0 =ztwz,+0'z,
h=wh =2t wr+ 0, Y= =7, wT,+w’z;.
These functions differ only in the permutations of z,, z,, z,. As
there are just six permutations of three letters, these functions
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give all that can be obtained from ¢, by permuting z,, ,, z,, For
this reason, ¢, is called a siz-valued function.

Lagrange’s & priort solution of the general cubic (1) consists
in determining these six functions ¢,, ..., ¢, directly. "~ They are
the roots of the sextic equation (t—¢,)...(t—¢) =0, whose
coefficients are symmetric functions of ¢,, . . . , ¢, and consequently
symmetric functions of z,, x,, 2, and hence * are rationally expressible
in terms of ¢, ¢, ¢;.  Since ¢,=w?Y,, y=wy,, etc., we have by (6)

(t—‘/'x)(t_‘/'z)(t_‘/'s) = t’_‘/’xs’
(E=dI(E—¢s)(t—do)=1"—¢

Hence the resolvent sextic becomes
9 =+ + % =0.
But =2 +2,7+ 2 + (0 + %) (2,2, + 2,25+ 2,2,)
= (2 +2, 1 25)*— 3(2,2, + 2,25 + %) = ¢, — ey,
in view of Ex. 6, page 4. Also, ¢,*+¢,® equals

2(z,*+ 2,° + x°) — 3(x, 2, + 2,2, + 2,7y + 2,7 + 2,225 + 1,747) + 122,2,7,
=3(z,*+x,°+2,°) — (2, + 2, + 25)° + 187, 7,7,
=2¢,*—9c¢,c, +27c,.

Hence equation (9) becomes
—(2¢,2—9c,c,+27cg)t®+ (c,2—3¢;)2=0

* Solving it as a quadratlc equation for ¢* we obtain two roots 0
and &, and then obtain

¢ =</—: ¢4=‘e/_;

Here ¥/6 may be chosen to be an arbitrary one of the cube roots
1 of 6, but /% is then that definite cube root of & for which

(10) VoA G=c2—3c,
We have therefore the following known expressions:

T 4wt +ot,=V0, z,+0Ttor,=V0, z,+2,+1,=c,

* The fundamental theorem on symmetric functions is proved in the
Appendix.,



6 GENERAL QUADRATIC, CUBIC, AND QUARTIC,  [Cm.I

Multiplying them by 1,1, 1; then by v?, w, 1 ,. and finally by w, 0?2, 1;
and adding the resulting equations in each case, we get
z,=3(c,+¥ 0+,
(11) z,=¥(c,+ 0¥V 0 +w Y/6"),
' z=3(c,+w ¥V +w? ).

4. Quartic equation. The general equation of degree four,
(12) x‘+az3+bx2+cz+d=0,
may be written in the form

(z*+ }ax)?=(}a®—b)x®*—cx—d.

With Ferrari, we add (224 3az)y+ }y? to each member. Then
(13)  (#*+iez+3y)’ =10’ —b+y)2’+ (Ray—c)z+ 1y’ —d.

We seek a value y, of y such that the second member of (13) shall”
be a perfect square. Set

(14) a’—4b+ 4y, =t
The condition for a perfect square requires that
— 2
18 e+ oy —ge+ iy —d= (bt FBZ2)’
. 2_J— tay,—c z= (3ay,—¢)’
- d—< t ) T a?—4b+4y,’

Hence y, must be a root of the cubic, called the resolvent,
(16) ‘Y3 —by?+ (ac—4d)y—a*d +4bd—c*=0.

In view of (15), equation (13) lead:; to the two quadratic;.
equations . '
an z*+(3a— )z + 3y, — (day, — ) /t=0,
(18) z*+(3a+3)z+ 3y, + (3ay, — o) /t=0. ,
Let z, and z, be the roots of (17), 2, and z, the roots of (18). Then |

z,+z,=—}a+ 3, r,x, =3y, — (3ay,—c)/t, |
+z,=—%a—4t, zz,=3y,+Hay,—c)/t.
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.By addition and subtraction, we get
(19) T+ T —T—T,=t,  TT T =Y.

La solving (17) and (18), two radicals are introduced, one equal
to z,—z, and the other equal to z;—z, (see § 1). Hence all the
irrationalities entering the expressions for the roots of the general
quartic are rational functions of its roots.

If, instead of y,, another root of the resolvent cubic (16) be
employed, quadratic equations different from (17) and (18) are
obtained, such, however, that their four roots are z,, z,, z,, ,,
but paired differently. It is therefore natural to expect that the
three roots of (16) are

(20) N=T T+ 2Ty, Yo=Ty T3+ ToT, Y=+ T, T,

It is shown in the next section that this inference is correct.
5. Without having recourse to Ferrari’s device, the two quad-
ratic equations whose roots are the four roots of the general quartic
" equation (12) may be obtained by an & priort study of the rational
functions’ z,z,+z.x, and z,+2z,—x,—x,=t. The three quantities
(20). are the roots of (y—y,)(y—¥.)(y—ys) =0, or

(21) Y=Y+ Y%+ Y)Y + (Y + Yyl + oY) Y — Yy YaYs=0.

Its coefficients may be expressed * as rational functions of g, b, ¢, d;

Y+ Yo+ Ys=2,%, + T + T, B5+ 2,8, + 3,24+ 24T, =D,
YiYstYiYstYals= —42,7,7:T,
; (2, + Ty + T3+ 2,) (£,8,2 + T, 2,0, + T, 26T+ T,75T)
=ac—4d,
! YiYaYs= (2,2, + 2, 2,0, + 2,2, + 2,7:2,)?
! + 22,27, { (2, + T, + T+ 7)) — 4(2, 2, + T, Ty ...+ 22, }
» =+ d(a?—4b).

¥ This is due to the fact (shown in § 29, Ex. 2, and § 30) that any per-
tation of ,, @,, 7;, ¥, merely permutes ¥, ¥, ¥s, SO that any symmetrio
.ction of yy, ¥,, ys is a symmetric function of x,, x,, 7y, #, and hence rationally
{" pressible in terms of a, b, ¢, d.
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Hence equation (21) is identical with the resolvent (16). Next,

=(2,+2,+ 25 +7,)* — 4z, +2,) (25 + 7))
=a*— 42,2, + 2Tt - . . +2T,) + 42,7, + 4257,
—4b+4y,.

Again, z,+z,+2,+2,= —a. Hence
T, +2,=3(t—a), Ztz,=%—i—a).
To find z,x, and g%y, We note that their sum is y,, while

-

—i— t—a
—c=2,2,(23+2,) + 2,2(2, + 2,) =2, ( ) + xg—'h( > .

Sz =(c—day, 3y /t,  xx=(—c+day,+3ty)/t.

Hence z, and «, are the roots of (17), z, and z, are the roots of (18).

6. Lagrange’s & priort solution of the quartic (12) is quite -
. similar to the preceding. A root y,=zx,+z,x, of the cubic (16)
is first obtained. Then zx,=2, and zz,=2, arc the roots of

22—y,2+d=0.
Then z,+z, ana z,+z, are found from the relations
(z,+2,) + (2 +7) = —0q,
2)(Z+2,) +2,(T+ T)) =TT, 2 + T2 Ty + T,T,Ty + T, T, T = —C. 3‘
az,—c N '
z—z
Hence z, and , are given by a quadratic, as also z; and z,.
7. In solving the auxiliary cubic (16), the first 1rrat10nahty (
entering (see § 2) is
A=~ 1) (Y~ Y) (¥ —)-

But Y1~ Y= (2, —2) (2, —25),
Yo—Ys= (2, — ) (23— ), y,—y.=(a:,—:c.)(z\,—x.), "\(

—az,+c¢
Tt T,= P —lzz ) TytT=
1

in view of (20). Hence '
(22) A= (2, —2,) (%, — ) (%, — 2,) (2, = Zy) (23— 2) (23— 2. \ i

7
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By § 2, the reduced form of (16) is 3*+Py+Q=0, where

{ P=ac—4d—3b?,
Q= —a’d+§abc+§bd—c’—ﬁbf.

Applying (8), with a change of sign, we get

(23)

(24) 4=6V —3V1iQ*+ MPC,



CHAPTER II.
SUBSTITUTIONS; RATIONAL FUNCTIONS.

8. The operation which replaces z, by z ., 7, by Tp T3 DY Try e v ey
zn by 2., where a, 8,..., v form a permutation of 1, 2,..., n,
is called a substitution on z,, z,, 2;,..., Z,. It is usually des-

ignated
T, T Ty ... Ty
Ta Ty Ty ... T/

But the order of the columns is immaterial; the substitution may
also be written

T, Ty Ty ... Tn) o0 (T T T Ty .l
Ty Ta Ty ... T’ Ty Ta Ty Ty ...)’

The substitution which leaves every letter unaltered,
T, Ty Ty ... Tn
Ty Ty Ty ... ZTn)’
is called the identical substitution and is designated I. _
9. TueoREM. The number of distinct substitutions on n letters
isnl=n(n-1)...3.2.1, :
For, to every permutation of the n letters there corresponds a
substitution.

ExampLE. The 31=6 substitutions on n =3 letters are:
.I= (1'1 z3 xs)' a= (9’1 Ty xa)’ b= (xl T3 33)

Ty Ty Ty Tz T3 Ty T3 Ty L)’
c= (xl T, xa) d= (xl T3 1'3) e= (xl T z,)
2y x3 T)° Z3 T T.)’ Ty Ty Ty) "
Applying these substitutions to the function ¢ =z, + wz,+w?z;, we obtain
the following six distinet functions (cf. § 3):
1=+ wr,+w'T=¢, Ja=1,+ 0T+, =w?, db =23+ 0z, + 0’2, =,

=1+ 0y + w'z,, $a=2,+ 0z, + 'z, =¥, e =123+ W, + Wiy =we.
10
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Applying them to the function ¢=(x, —z,)(2,—z,)(z;—z,), we obtain
Pr=da=do=9¢, Pe=Pa=ge=—¢.
Hence ¢ remains unaltered by I, a, b, but is changed by ¢, d, e.
10. Product. Apply first a substitution s and afterwards a
substitution ¢, where

s=<:c, Z, ... x,.), e (x“, Ty ... Ty )

Ta Ty ..o Ty Td Ty ... T

The resulting permutation z«, Z¢, . . . , 2.* can be obtained directly
from the original permutation z,, z,, ..., z, by applying a single

substitution, namely,
e (xl Ty ... Zn )
Tg’ xp’ eee Xy

We say that u is the product of s by ¢ and write u=st.

Similarly, stv denotes the substitution w which arises by apply-
ing first 8, then ¢, and finally v, so that stv=uv=w. The order
of applying the factors is from left to right.*

ExampLes. For the substitutions on three letters (§ 9),

ab=ba=I, ac=d, ca=e, ad=e, da=c,
aa=b, bb=a, abc=Ic=c, aca=da=c.

Applying the substitution a to the function ¢, we get ¢a; applying the
substitution ¢ to ¢a, we get ¢q. Hence ¢ac=¢d. Likewise ¢ap=¢r=¢,
foa=.

11. Multiplication of substitutions is not commutative in
general.

Thus, in the preceding example, ac#ca, ad%da. But ab=ba,
so that a and b are said to be commutative,

12. Multiplication of substitutions is associative: st-v=s-tv.

Let s, ¢, and their product st=u have the notations of § 10. If

v (xa’ Ty ... xu>’ then t— (xa Ty .. Ty )

Tq" xp” cee Xy xa’l xﬂ” eee Ly’

. T, Ty ...Tn T, Xy oo Ty [Ta ... Ty
S, stev=uv= (1 =("1 =s-tv.
(x,," Tgr ... :t,,") (-’ta Ty oo ) \T e T

ExampLE. For 3 letters, ac-a=da=c, a-ca=ae=c.

** This is the modern use. The inverse order ¢s, vts was used by Cayley
and Serret.



12 SUBSTITUTIONS ; RATIONAL FUNCTIONS. [Ca I1

13. Powers. We write s? for ss, s® for sss, etc. Then
(25) gmgn =gm+n (m and n positive integers).

For, by the associative law, smgn=gm.ggn—1=gm+ign=1=
14. Period. Since there is only a finite number n! of dJstmct
substitutions on n letters, some of the powers

s, 8%, 88, ... adinfimitum
must be equal, say sm=gm+n, where m and n are positive integers.
Then sm=sms*, in view of (25). Hence s* leaves unaltered each
of the n letters, so that s»=1.
The least positive integer o such that s°=1 is called the period
of 8. It follows that
(26) 8, 8, ...87 =]

are all distinct; while s°+!, s°+2, ..., s%~! g% are repetitions
of the substitutions (26). Hence the first o powers are repeated
periodically in the infinite series of powers.

ExampLEs. From the example in § 10, we get

a*=b, a’=a’a=ba=1I, whence a is of period 3;
b*=a, b¥=b®b=ab=I, whenceb is of period 3;
c, d,eareofpenod2 Ilsofpenodl

15. Inverse substitution. To every substitution s there corre-
sponds one and only one substitution s’ such that s¢’=1. If

[z, z, ... Tn ' (T Xy ... T
5= (:c:. Ty ... :v.,)’ ekl —<x: x': ces x;)'
Evidently s’s=1. We call & the inverse of s and denote it hence-
forth by s~*. Hence

88 1=s"13=], (87Y)~"l=s.
If s is of period o, then s~'=s°~1, Since s replaces a rational
function f=f(x,, ..., Ts) by fo=f(2s, ..., ), s~ replaces f, by /.
ExampLes. For the substitutions on 3 letters (§ 9),
_ (% x, T __xz'xx_;cz,z
e=(GR2) =GR =G5 -

b-l=a, c'=¢, d'=d, e'=e, I '=I.
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These results also follow from those of the examples in § 14. For the
functions of § 9 the substitution a replaces ¢ by ¢a; a—'=b replaces ¢a by ¢.
16. THEOREM. If st=sr, then t=r.

Multiplying st and sr on the left by s~, we get
8 st=t, 8 'sr=r.

17. THEOREM. If ts=7s, then t=r.
18. Abbreviated notation for substitutions. Substitutions like

a= (xx T x:), b= (xx T xz), g= (xz T3 I, z«)}

Z; T3 T, Ts T3 Iy T3 Ty Ty T,
which replace the first letter in the upper row by the second letter
in the upper row, the second by the third letter in the upper row,
and so on, finally, the last letter of the upper row by the first letter
of the upper row, are called circular substitutions or cycles. In-
stead of the earlier double-row notation, we employ a single-row
notation for cycles. Thus

a=(z,7,7;), b=(z7x,), q=(2,247,7,).

Evidently (z,2,r;) = (2,2, = (257,%,), since each replaces z, by
£y, Ty bY z5, and z, by z,. A cycle 1s not altered by a cyclic permu-~
tation of s letters. .

Any substitution can be expressed as a product of circular
substitutions affecting different letters. Thus

(B2 =@, (2R2HDT) - (@nn) @)@

A cycle of a single letter is usually suppressed, with the under-
standing that a letter not expressed is unaltered by the substitution.
Thus (z,)(z,z,) is written (x,2,).

A circular substitution of two letters is called a transposition.

19. Tables of all substitutions on = letters, for n=3, 4, 5.

For n=3, the 31=6 substitutions are (compare § 9):

I=identity, a=(z,z,2y), b=(,257),
‘ e=(z7y), d=(z;7), e=(2%).
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For n=4, the 24 substitutions are (only the indices being written):

I=identity;

6 transpositions: (12), (13), (14), (23), (24), (34);

8 cycles of 3 letters: (123), (132), (124), (142), (134), (143), (234),
(243);

6 cycles of 4 letters: (1234), (1243), (1324), (1342), (1423), (1432);

3 products of 2 transpositions: (12)(34), (13)(24), (14)(23).

For n=5 the 5!=120 substitutions include

I=identity;

5—; =10 transpositions of type (12);

%§=20 cycles of type (123);
5'4;3.2 =30 cycles of type (1234);

5—4-35—21 =24 cycles of type (12345);

5.3 =15 * products of type (12)(34);
20 t products of type (123)(45).

EXERCISES.

1. The period of (123...n) isn; its inverseis (nn—1...321).

2. The period of any substitution is the least common multiple of the
periods of its cycles. Thus (123)(45) is of period 6.

3. Give the number of substitutions on 6 letters of each type.

4. Show that the function x,z,+ 2, is unaltered by the substitutions I,
(z22), (22), (@2)(2s20), (2,2)(2,2)), (7,2,)(22%3), (2,7:2,2,), (2,2,25%5).

5. Show that z,x;+ x4z, is changed into z,z;+ 2, by (2,2, (z,2), (2,252;),
(22,20, (£:283), (22520, (2,2,2,83), (%,1%5T4%,)-

6. Write down the eight substitutions on four letters not given in Exs.
4 and 5, and show that each changes z,x, + 2, into z,z, + z,z,.

* Since the omitted letter may be any one of five, while one of the four
chosen letters may be associated with any one of the other three letters.
1 The same number as of type (123), since (45) =(54).



CHAPTER III.
SUBSTITUTION GROUPS; RATIONAL FUNCTIONS.

20. A set of distinct substitutions s,, s,, ..., 8, forms a group
if the product of any two of them (whether equal or different) is a
substitution of the set. The number m of distinct substitutions
in a group is called its order, the number 7 of letters operated on
by its substitutions is called its degree. The group is designated
Gp.

All the n! substitutions on n letters form a group, called the
symmetric group on n letters G%. In fact, the product of any
two substitutions on 7 letters is a substitution on n letters. The
name of this group is derived from the fact that its substitutions
leave unaltered any rational symmetric function of the letters.

ExampLE 1. For the six substitutions on n=3 letters, given in § 9, the
multsplication table is as follows: *

Ilabcde
I |I a b c¢c d e
a |a b I d e ¢
G b [b I aecd
c |c e d I b a
d |d c e ald
e le d ¢ b a I

Thus ad =e is given in the intersection of row a and column d.
Exawmpie 2. The substitutions I, a, b form a group with the multiplica-

tion table
I a b
I I a b
a a b I
b b I a

* It was partially established in the example of § 10.
15
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If s is a substitution of period m, the substitutions
I,s,8,...,8m1
form a group of order m called a eyclic group.

ExampLr 3. I, a=(123), b=a'=(132) form a cyclic group (Ex. 2).
ExAMPLE 4. I, s=(123)(45), s?=(132), s*=(45), s*=(123), & =(132)(45)
form a cyclic group of order 6 and degree 5.

21. FUNDAMENTAL THEOREM. All the substitutions on z,,
Ty, . .. , Tn Which leave unaltered a rational function ¢(z,, Z,, ... , Tn)
form a group G.

Let ¢, denote the function obtained by applying to ¢ the sub-
stitution s. If a and b are two substitutions which leave ¢ unaltered,
then ¢,=¢, dp=¢. Hence

(Pa)o=(Plo=p=, or u=0.
Hence the product ab is one of the substitutions which leave ¢
unaltered. Hence the set has the group property.
The group @ is called the group of the function ¢, while ¢ is
said to belong to the group G.

ExampLE 1. The only substitutions on 3 letters which leave unaltered
the function (z,—,)(z; —2y)(23—=,) are (by § 9) I, a=(2,7,%5), b=(z,2s7,).
Hence they form a group (compare Ex. 2, § 20). Another function belonging
to this group is

(# + wr;+wiry)®, w an imaginary cube root of unity.

ExampLE 2. The only substitution on 3 letters which leaves unaltered
%, +wr,+wzy is the identity I (§ 9). Thus the substitution I alone forms
a group G, of order 1.

ExampLE 3. The rational functions occurring in the solution of the
quartic equation (§ 4) furnish the following substitution groups on four
letters:

a) The symmetric group G, of all the substitutions on 4 letters.

b) The group to which the function y, =z,x, + 2.z, belongs (Exs. 4-6, p. 14):

Gy={1, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)}.

¢) Since y,=z,x;+z,x, is derived from y,=zz,+2z2, by interchanging
z, and z;, the group of y, is derived from G by interchanging z, and z, within
its substitutions. Hence the group of ¥, is

Gy ={I, (13), (24), (13)(24), (12)(34), (14)(32), (1234), (1432)}.
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d) The group of yy=z,%,+x,7,;, derived from G, by interchanging z,
and z,, is:

Gy =11, (14), (32), (14)(32), (13)(42), (12)(43), (1342), (1243)}.
¢) The function z,+x,—2z;—z, belongs to the group
H,={I, (12), (39), (12)(34)}.

Since all the substitutions of H, are contained in the group Gy, H, is called
a subgroup of G,. But H, is not a subgroup of Gy'.
) The function ¢ =y, +wy,+wl,, or
$ =22, + 2+ 0(2,23+ 2,20 + 0N (2,2, + 237),

remains unaltered by the substitutions which leave y,, y,, and y; simulta-
neously unaltered and by no other substitutions. Hence the group of ¢ is
composed of the substitutions common to the three groups Gy, Gy, Gy”,
forming their greatest common subgroup:

G={I,r=(12)(34), 8=(13)(24), t=(14)(23)}
That these four substitutions form a group may be verified directly:
r’=I,8*=I, t*=I,
r8=8r=14, rt=ir=s, st=ts=r.

Hence any two of its substitutions are commutative. This commutative
group G, is therefore a subgroup of Gy, Gy’, and Gy".

22. THEOREM. Every substitution can be expressed as a product
of transpositions in various ways.

Any substitution can be expressed as a product of cycles on
different letters (§ 18). A single cycle on n letters can be expressed
as a product of n—1 transpositions:

(1234...n)=(12)(13)(14) . .. (1n).

Exampres.  (123)(456) =(12)(13)(45)(46),
(132) =(13)(12) =(12)(23) =(12)(23)(45)(45).

23. TuEOREM. Of the various decompositions of a given subsii-
tution s into a product of transpositions, all contain an even number
of transpositions (whence s is called an even substitution), or all
contain an odd number of transpositions (whence 8 i3 called an odd
substitution),
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- A single transposition changes the sign of the alternating
function * : .
&=(2,—2,)(2,— 7,)(2,— %)) . . . (T,—%n)
(2= z) (T —2) . . . (T,—Tn)
“(Tn—y—Tn).

Thus (z,z,) affects only the terms in the first and second lines of
the product, and replaces them by

(22— 2,)(2,— o) (2, — %)) - . . (T,—Zn)
A (@) (2, =) . - (B~ ).
Hence, if s is the product of an even number of transpositions,
it leaves ¢ unaltered; if s is the product of an odd number of trans-
positions, it changes ¢ into —¢.
CoroLLARY. The totality of even. substitutions on = letters
forms a group, called the alternating group on = letters.

ExampLE 1. The alternating group on 3 letters is (§§ 9, 19)
GO ={I, (123), (132)}.
Exampre 2. The alternating group on 4 lettersis (§ 19)
6,0 ={I, (12)(34), (13)(24), (14)(23), and the 8 cycles of three letters}.
24. TueEOREM. The order of the alternating group on n letlers
8 3-nl
Denote the distinct even substitutions by

() €y, €2 €3y« ey Cke
Let ¢ be a transposition. Then the products
(o) et, e, e, ..., et

are all distinet (§ 17) and being odd are all different from the
substitutions (e). Moreover, every odd substitution s occurs in

* It may be expressed as the determinant

1z, 2?2 ...z
1z, 22 ... 20!

PR

.
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the set (o), since st is even and hence identical with a certain e;,
so that

s=et " l=¢4.
Hence the 2k substitutions given by (e) and (o) furnish all the n!
substitutions on n letters without repetitions. Hence k=4%-n!

25. As shown in § 21, every rational function ¢(z,,..., z,)
belongs to a certain group G of substitutions on z,, . . ., Z,, namely,
is unaltered by the substitutions of G and changed by all other
substitutions on z,, ..., z,. We next prove the inverse theorem:

Given a group G of substitutions on z,, . . . , T,, we can construct
a rational function ¢(z,, ... ,x,) belonging to G.

Let G={a=1,b,¢,...,1} and consider the function

V=ma,+mz,+ ... +Mp2y,
where m,, m,, ..., m, are all distinct. Then V is an nlvalued
function. Applying to V the substitutions of G, we get
@2n . Vo=V, Vp,...,. V.
all of which are distinct. Applying to (27) any substitution ¢
of G, we get
(28) Vaor Veey -« + « Viee
These values are a perrautation of the values (27). since ac, be, ... ,lc
all belong to the group G and are all distinct (§ 17). Hence any
symmetric function of V,, Vi, ..., V¥, is unaltered by all the
substitutions of G. By suitable choice of the parameter p, the
symmetric function
¢=—V)e—=Vi)(e—Vo) ... (o= V1)
will be altered by every substitution s not in G. Indeed,
¢3E(P_ Va)(ﬂ_ Vbc)(.o_' Vcc) oo (P_ Vla)
is not identical with ¢ since V, is different from V, V4, V.,..., V.
Exampre 1. For G={I, a=(z,x,%;), b =(z,2y7,) }, take
V =2,+or;+ wz;.
Then Va=w?V, Vo=wV. Hence

V+VatVo=(1+0+0)V =0, VVa+VVs+VaVs=0, VViVp=V".
The function V* belongs to G (see Ex. 1, § 21).
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ExampLE 2. For G={I, c=(x,z,) }, take the V of Ex. 1. Then
VVe=(2;+ 0z, + 0) (2, + 0Ty + &*x,) =¢,*—3c,
is unaltered by all six substitutions on the three letters. But
d=(0—V)(0—Ve) =p*— (22, —2,—z3)p+¢,* —3c,,

for p=0, is changed by every substitution on the letters not in G. Hence,
for any p0, ¢ belongs to G.

EXERCISES.
Ex. 1. If w is a primitive pth root of unity,
(m o+ 0z + ... FoB—lzy)n

belongs to the cyclic group {1, a, a?, ..., a#—'}, where a=(z, 2,...zy).

Ex. 2. Taking V=z,+1z, —a:.—zx. and 8 =(z,2.)(z4z,), show that

VVe=i(z,—z5)?+i(z;—x,)* belongs to G, of § 21, that V+V, belongs to H,
of § 21, while (o—V)(p—V,), for p=0, belongs to theogroup {1, s}

Ex 3. Taking V =z,+1z,—2,—1z, and t=(z,z;)(z,z,), show that VV,
belongs to the group {I, ¢}

Ex. 4. If a, a,, .. ., an are any distinct numbers, the function

V=x%2,%.. Zp%

isnl-valued, and V+ Vp+Ve+ ... + Vi belongsto {I,b,¢,. .,1.
Ex. 5. If ¢ belongs to G and ¢’ belongs to G’, constants a and a’ exist
such that a¢ +a’¢’ belongs to the greatest common subgroup of G and G".

26. THEOREM. The order of a subgroup s a divisor of the order
of the group.

Consider a group @ of order N and a subgroup H composed of
the substitutions

(29) h=1I, by, hy. ..., hp.

If G contains no further substitutions. N=P, and the theorem
is true. Let next G contain a substitution g, not in H. Then
G contains the products

(30) 925 hoGsy PG, - - . 5 hpg,.

The latter are all distinet (§ 17), and all different from the sub-
stitutions (29), since h.g,=hs requires that g,=h;'hg=a sub-
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stitution of H contrary to hypothesis. Hence the substitutions
(29) and (30) give 2P distinct substitutions of G. If there are
no other substitutions in G, N=2P and the theorem is true. Let
next G contain a substitution g, not in one of the sets (29) and (30).
Then G contains

(31) s haGs: MsGss - « « < hpgs

As before, the substitutions (31) are all distinct and all different
from the substitutions (29). Moreover, they are all different from
the substitutions (30), since k.g;="hpg, requires that g,=h: 'hgg,
shall belong to the set (30), contrary to hypothesis. We now
have 3P distinct substitutions of G. Either N=3P or else (
contains a substitution g, not in one of the sets (29), (30) (31)
In the latter case, G contains the products

(32) 9, .9, h,gv ..., heg,,

all of which are distinct and all different from the substitutions
(29), (30), (31), so that we have 4P distinct substitutions. Pro-
ceeding in this way, we finally reach a last set of P substitutions

(33) gvy hzgl') h’sgvr ) thV:
since the order of H is finite (§ 9). Hence N=yP.
DerFINITION. The number v=iv— is called the index of @

P
the subgroup H under G, and the relation is exhibited in Y J.[
the adjacent scheme.

CoroLLARY. The order of any group H of substitutions on n
letters is a divisor of n! Indeed H is a subgroup of the symmetric
group G,, on n letters.

27. THEOREM. The period of any substitution contained in a
group G of order N 1s a divisor of N.

If the group G contains a substitution s of penod P, it contains
the eyclic subgroup H of order P:

H={s, s%...,sP7 ! sP=1I}.

Then, by § 26, P is a divisor of N.
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CoroLLARY.* If the order N of a group G is a prime number,
G is a cyclic group composed of the first N powers of a substitution
of period N.

28. As shown in § 26, the N substitutions of a group G can
be arranged in a rectangular array with the substitutions of any
subgroup H in the first row:

h=Ih, by ... hp
9 hg hgy ... hpg,
ga hzga hsga «.. hpgy

gv hzgv h,g.- eeo hpgs

Here g,=1, g5, Gy ..., g» are called the right-hand multipliers.
They may be chosen in various ways: g, is any substitution of G
not in the first row; g, any substitution of G not in the first and
second rows; g, any substitution of G not in the first, second, and
third rows; etc.

Similarly, a rectangular array for the substitutions of G may
be formed by employing left-hand multipliers.

29. THEOREM. I} ¢ 18 a rational function of z,. . . ., x, belonging
to a subgroup H of index v under G, then ¢ is v-valued under G.

Apply to ¢ all the N substitutions of G arranged in a rect-
angular array, as in §28. All the substltutlons belonging to a
row give the same value since

¢'h‘g¢ = (‘/’h‘ )a,. = (Sl')a. = Sba..'

Hence there result at most v values. But, if

o, =¢v‘, B<a),
then ¢, " 1=¢, so that g.gz' is a substitution h, leaving ¢

* This result is a special case of the following theorems, proved in any
treatise on groups:

If the order of a group is divisible by a prime number p, the group contains
a subgroup of order p (Cauchy)

If pt is the highest power of the prime number p dividing the order of a
group, the group contains a subgroup of order pt (Sylow).
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unaltered. Hence ga=Ph.g,, contrary to the assumption made in
forming the rectangular array.

DerFiniTioN. The v distinet functions ¢, ¢g, &4, ..., ¢,, are
called the conjugate values of ¢ under the group G.

Taking G to be the symmetric group Gy, we obtain Lagrange’s
result:

The number of distinct values which a rational function of n
letters takes when operated on by all n| substitutions is a divisor of n!

ExampLe 1. To find the distinct conjugate values of the functions
4=(z,—z,)(2;—z)(Ty—1y), 0=(2,+wz,+0'zy)*

under the symmetric group G, on 3 letters, we note that they belong to the
subgroup Gs={I, a=(z,z,,), b=(x,2s2,)}, as remarked in § 21, Ex. 1. The
rectangular array and the conjugate values are:

I, a=(za3), b=(z2:7,)
T e=(z), ac=(zy), be=(zz)

4
—4

0
Oc

ExampLe 2. To obtain the conjugate values of z,z,+z.z, under the
symmetric group G, on 4 letters, we rearrange the results of Exs. 4, 5, 6,
page 14, and exhibit a rectangular array of the substitutions of G,, with
those of Gy in the first row:

I, (12), (34), (12)(39), (13)(24), (14)(23), (1324), (1423) | 22, + 252,
(234), (1342), (23), (132), (143), (124), (14), (1243) | 7,25+,
(243), (1432), (24), (142), (123), (13), (1234), (13), |22+,

30. THEOREM. The p distinct values which a rational function
(=, ..., xn) takes when operated on by all n! substitutions are the
roots of an equation of degree p whose coefficients are rational functions
of the elementary symmetric functions

(34) c=z42,+...+2,, c,=qc,xz+:v1:c3+. o F T Ty e e,
Cn=Z,25 ... ZTn.
Let the p distinet values of ¢(x,, ..., z,) be designated
(35) - A=, s Py +-vs Pp

They are the roots of an equation (y—¢,)(y—¢,) ... (y—¢,)=0
whose coefficients ¢, +¢,+.. .+ Pp. ..., £ h: P, .. . Py are symmetric
functions of ¢, ¢,,..., ¢p. After proving that they are symmetric
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functions of z,, z,, . . ., Zn, we may conclude (Appendix) that they
are rational functions of the expressions (34). We have therefore
only to prove that any substitution s on =z, ..., z, merely
interchanges the functions (35). Let s replace the functions
(35) by respectively

(36) Bl S B3 - ooy P

In the first place, each ¢’ is identical with a function (35).
For, there exists a substitution ¢ which replaces ¢, by ¢;, and s
replaces ¢; by ¢7, so that ¢s replaces ¢, by ¢;. Hence there is a
substitution on «,,..., %, which replaces ¢, by ¢, so that ¢!
occurs in the set (35).

In the second place, the functions (36) are all distinct. For,
if ¢7=¢j}, we obtain, upon applying the substitution s~%, ¢i=d;.
contrary to assumption.

DeriniTION. The equation having the roots (35) is called the
resolvent equation for ¢.

Compare the solution of the general cubic (§ 3) and general quartic (§ 5).

381. LAGRANGE’S THEOREM. Ifa rational function ¢(z,, Z.,..., Z,)
remains unaltered by all the substitutions which leave another rational
Junction §(z,, x,,..., T,) unaltered, then ¢ vs a rational function
ofpandcy,c,...,cCn

The function ¢ belongs to a certain group

H= {hIEI: ks, ha’ ) hP}'

Let v be the index of H under the symmetric group G,;. Consider _
a rectangular array of the substitutions of G, with those of H
in the first row:

Ih wohp ¢ =¢| ¢=¢
92 hagy ... heg, | by=¢. | dp=¢,

gv h”.g” e thV ‘r”ﬂvE‘lbv ¢ﬂyE¢v
Then ¢,, ¢s, ..., ¢, are all distinet (§ 29); but ¢,, ¢,,..., ¢, need
not be distinct since ¢ belongs to a group G which may be larger
than H. Under any substitution s on z,, ,, . . ., Z,, the functions
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¢ ¢s. « -« , ¢y are merely permuted (§ 30). Moreover, if s replaces
¢: by ¢, it replaces ¢; by ¢, Set
gO=@—P)(t—¢5) ... (=),

=g (2 470 ),

so that A(t) is an integral function of degree v—1 in ¢ Since
A(t) remains unaltered under every substitution s, its coefficients
are rational symmetric functions of z,, z,,..., z, and hence are
rational functions of the expressions (34). Taking ¢,=¢ for ¢,
we get *

A(ﬂbx) == (¢, — S[’:)(S"x_‘/’s) - (¢ ‘¢V) h=g"(¢y)- by

The theorem may be given the convenient symbolic form:
G:$
If }lI ¢, then ¢=Rat. Func. (¢; ¢y, ..., Cn).

Taking first H=G and next H=1, we obtain the corollaries:

CoroLLARY 1. If two rational functions belong to the same group,
either 13 a rational function of the other and c,, c,, .

CoROLLARY 2. Every rational funciion of z,, %,,..., T, 7S @
rational function of any n'-valued function (such as V of § 25) and
€1y Coy 000y Cne

EXAMPLE 1. The functions 4 and 6 of Ex. 1, § 29, belong to the same
group G" ‘We may therefore express 4 in terms of 6. By§§2,3,

3v-3 4=(xl+“”¢2+‘”“a),_(2x+w$z+wzxa)s=( : ;36,);—0.

The expression for §=¢,? in terms of 4 is given in § 34 below.

* The relation (37) is valid as long as z,, «;, . . ., z» denote indeterminate
quantities, since ¢, ..., ¢» are algebraically distinet so that g’'(¢) is not
identically zero. In case special values are assigned to zy, ..., Z» such that
two or more of the functions ¢,,..., ¢, become numerically equal, then
g'(¢) =0, and ¢ is not a rational function of ¢, ¢;, ..., ca. In this case, see
Lagrange, (@uvres, vol. 3, pp. 374-388; Serret, Algébre, II, pp. 434-441.
But this subject is considered in Part II.
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ExampLE 2. The function y,=zz,+ 2z, belongs to the group G, and
t=zx, + 2, —x,—2, belongs to the subgroup H, (§ 21). Hence y, is a rational
function of ¢ and the coefficients a, b, ¢, d of the equation whose roots are
z,, T3, T3, z,. By § 5, yl-*("—a"l“lb)

ExampLE 3. The function ¢, =z,+wz,+wiz, has 3!-6 values. Hence
every rational function of z,, z,, , is a rational function of ¢, and ¢, ¢, c,.
The expressions for z,, z,, z; themselves follow from the formulm (11) of § 3.

Thus
Zy=} ("I'H[’x"' ! ‘;l&,) .

G:¢
82. THEOREM. If v | , then ¢ satisfies an equation of degree v
H:y ‘

whose coefficients are rational functions of ¢, ¢;,. .., Cn.
Asin § 29, we consider the v conjugate values of ¢ under G;

$ bo, oy -+ v s Yo,

Under any substitution of the group @, these values are merely
permuted amongst themselves. Hence any symmetric function
of them is unaltered under every substitution of G and therefore,
by Lagrange’s Theorem, is a rational function of ¢, ¢, ..., cxe
The same is therefore true of the coefficients of the equation

(w—¢)(w—gy,) . . . (W—¢,,)=0.




CHAPTER IV.
THE GENERAL EQUATION FROM THE GROUP STANDPOINT.

83. In the light of the preceding theorems, we now reconsider
Cardan’s solution (§ 2) of the reduced cubic equation y*+ py+q=0.
The determination of its roots y,, Yn Ys depends upon the chain
of resolvent equatxons

/3
e’=z-+ ﬁ’ where £= —Ef(yx—yz)(yz—ys)(y:—yi);

=_%+$, where z=31(y, +wy,+0%,);

o? '
Y=2— '31% ’ yz=a)z—-3—:), ya=wzz—a%'

Initially given are the elementary symmetric functions
Y1+%+%=0, Y%+YYst¥Ys=P, —Y¥¥=9
belonging to the symmetric group G, on ¥, ¥, ¥ Solving a
quadratic resolvent equation, we find the two-valued function £,
which belongs to the subgroup G, of G, (§ 21, Ex. 1). Solving
next a cubic resolvent equation, we find the sm-valued funetion z,
which belongs to the subgroup G, of G; (§ 21, Ex. 2). Then y,, ¥,, ¥,
are rational functions of z, p, g, since they belong to the respective

groups

G ={I, (v}, G"=1{I, ()}, G""={I, (vw)},
each containing @, (also direct from § 31, Cor. 2). From the
group standpoint, the solution is therefore expressed by the scheme:

(I;o P q
3C|r' € Gliyy Gy lGa"’= Y
G,:2z é‘:z 112 G,:z

27
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84, The same method leads to a solution of the general cubic
P —c 2+, z—cy=0.
To the symmetric group G, on z,, z,, z; belong the functions
Tt T+ T3=0C;y TT Tl FTT=0;, T,TT3=0y
To the subgroup Gy={I, (z,z,,), (z,2s%,)} belongs the function
4=(2,—2,)(2,— 25) (23— ,).
In view of Ex. 3, page 4, 4 is a root of the binomial resolvent
A*=c,%c;® + 18¢,c,04— 4,3 — 4c,%cy — 27,1,

By § 3 and § 2, we have for ¢, =, + w, + w2y, =, + W2, + w2y,
$2+ds= 2c¢,*—9c,c;+27c,, )
$P—dl= —3\/__3(x1—32)(x2—33)(33_z1)= -3V =3 4.

oo 93=3(2¢,2—9¢,c,+27¢c,—3V =3 4),
¢E=3(2¢.2—9¢c,c;+27c,+3V =3 4).
After determining * ¢, by extracting a cube root, the value of
¢uis (§3)
di=(c,’—3¢)) +¢.
Then, asin § 3, z,, z,, z, are rationally expressible in terms of ¢, :
r=3c,+¢1+4), T=3c,+o*twd), z;=3(c+wh+w).
35. The solution given in § 5 of the general quartic equation

12) z'+az®+ bx*4-cx+d=0
may be exhibited from the group standpoint by the scheme:

Gyuia,b,c,d
(I}'. Y =TT+ T, =(T,+ Ty —Zy—x,)?
/H. ity 2,4 Ty, T+, T, ToT,
H, z,—z, H/:z,—2,
Here H,= {1, (zsz))}, H)=1{I, (z,7,)}, G; and H, being given in § 21.

* For another method see Ex. 4, page 41.
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86. Lagrange’s second solution of (12) is based upon the direct
computation of the function z,+z,—2,—s,. Its six conjugate
values under G,, are +¢,, +¢,, +1t, where

=2+ 2~ 23—, L=T,1T—0,—%, bL=7,1+2—2,—
The resolvent sextic is therefore

(P =4,))(7* = %) (7 —1,")=0.
Its coefficients may be computed * easily by observing that
tl=a’—4b+4y,, t,*=a’—4b+4y, t=a’—4b+4y,,
as follows from § 5. Using the results there established, we get
t,2+ 8,2+ t,?=3a>— 12b+ 4(y, + y,+ y,) =3a>—8b,
82,24 1,24, 1,22 = 3(a®— 4b)*+ 8(a* — 4b) (3, + ¥, + ¥,)

+ 16(y,9,+ ¥1Ys+ ¥,Ys)
=3a*—16ab-+ 160+ 16ac—64d,

8%,2,2 = (a? — 4b)*+ 4(a* — 45)*(y,+ ¥, + ;)
+16(a® —4b)(%,9,+ ¥,Ys+ ¥,Ys) + 64Y,9,9,
= {8c+a(a?—4b)}2

The resolvent becomes a cubic equation upon setting t>=a. De-
note its roots by g,=4? g,=4? g;=¢>. Then

:v,+:cz—x,—x4=\/a_,, T+, —z,—r,=Vao,

T+ 2, —2,—T=\g, z,+1,+2,+7,=—a.
From these we get :
(38) % x,=1‘(—a+\/§+\/g:+\/§ , =K —a+Vo,~Va,—s,),

x3=‘}("a—‘\/a'l+‘\/o—'z—\/a,), :t‘=‘}(—a—‘\/;,-—‘\/o_'z+‘\/¢;;).
The signs of Vo, and Vo, may be chosen arbitrarily, while that
of Vg, follows from
(39) Vo NaN o=t tt,=4ab—8c—a’.
Indeed, we may determine the sign in
tt.t,= + {8c+a(a? — 4b)}

* Compare Ex. 5, page 41.
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by taking r,=1, z,=2,=x,=0, whence a= —1, b=c=d=0, t,t,t,=1.

37. The following solution of the quartic is of greater interest
as it leads directly to a 24-valued function V, in terms of which
all the roots are expressed rationally. As in § 5, we determine
y, and ¢, belonging to Gy and H, respectively, by solving a cubic
and a quadratic equation. To the subgroup

Gz= {I: (xlxz)(xsz‘.‘)}
of H, belongs the function ¢=V?, while to G, belongs V, where
V=(2,—x,)+%(z,—2x,).

Under H,, ¢ takes a second value ¢, ={(z,—z,)—i(z,—z,)}>

Then
22— (¢+ gzt ¢ =0
is the resolvent equation for ¢. But

¢ = {(z,—2,)°+ (2,—2,)*}* = {a®— 2b—2y,}*=}{3a®— 8b—£*}?,
¢+ ‘/'1=2{(x1 _xz)z_(xs_%)z} =2(xlfxz+xs_xg)(xl_xz—xs'l'14)
=2(4ab—8c—ad) +t,
in view of (39). After finding ¢ and ¢,, we get

V=v9. V,=V=(2,~2)—ilz,~2),
(40) V,=%(3a>—8b—1?) + V.

Hayving the four functions ¢, V, V,, and z,+ z,+ z,+ z,= —a, we get

(41) {xl=i‘(_a+t+ V+ VI)! x2=<}(—a+t—V—V,),
z,=3(—a—t—iV+iV)), z,=H—a—t+iV—1V,).
38. The solution of the general cubic (§ 34) and the solution of
the general quartic (§ 37) each consists essentially in finding the
value of a function which is altered by every substitution on the

roots and which therefore belongs to the identity group G,. Like-
wise, the general equation of degree n,

(42) zr—canr el — ...+ (—=1)"c, =0,

could be completely solved if we could determine one value of a
function belonging to the group G,; for example,
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(43) V=mz,+mz,+ ... +myz,  (m’sall distinct).

In fact, each z; is a rational function of V, ¢,,..., ¢, by § 31. For
the cubic and quartic, the scheme for determining such a function
V was as follows:

Gc:cn czr cs Gu:a; b’ ¢, d
2 3
3 l,:(x1+w:t,+w’$,)’ 9 Ialexz‘l‘zxﬂ
Gy: 7ot + 0’ 2I|I4:x1+:c,—x,—:t4
2G3:(x1_xz+ixs"'ix4)z
Gz, —x,+ iz —1ix,

The same plan of solution applied to (42) gives the following scheme :

}ll:f, ’ E+R(cy e ) +...=0
3

1|< 3 PP+ Ry(E, ¢y o o oy C)pr 4 L =0
0 .

G,:V, Ve4+R(( ¢, .n.,ca)VP—t+. . .=0.

Such resolvent equations would exist in view of the theorem of
§32. In case the resolvent equations were all binomial, the
function V (and hence z,, ..., z,) would be found by the extraction
of roots of known quantities, so that the equation would be solvable
by radicals. We may limit the discussion to binomial equations
of prime degree, since 22¢2=A may be replaced by the chain of
equations 22=u, u=A. The following question therefore arises:

¢
If ”L!I'gﬁ’ when will the resolvent equation for ¢ take the form

44 ¢*=Rat. Func. (¢, ¢,y . < « , Ca)-



Digitized by GOOS[Q



Skc. 40] THEORY OF ALGEBRAIC EQUATIONS. 33

Hence a necessary condition that the general equation of
degree n shall be solvable by radicals under the plan of solution
proposed in § 38 is that each group in the series shall be a self-
conjugate subgroup of prime index under the preceding group.

Note that the group G,={I} is self-conjugate under every
group @ since g—g=1I.

ExampLE 1. Let G be the symmetric group G; on 3 letters and let H
be the group Gs={I, (z,z;zy), (z,252;)}. Let g,=(z,z;). Then

¢=(2,+wz;, +0'z,)’, bo,=(2, + 0’z + 0z)°
form a set of conjugate functions under G. Now ¢ belongs to H and ¢,
belongs to the group {I, (z,z,7,), (z,2,%;)}, whose substitutions are derived
from those of H by interchanging the letters z, and z,, since that interchange
replaces ¢ by ¢g,. To proceed by the general method, we would compute
(222:) =1 (12523 (20%5) = (2:2572),  (T%0) ~H(T24%) (2,) =(2,2:25).

By either method we find that the group of ¢ and ¢, are identical, so that
G, is self-conjugate under Gy  Also, G, is self-conjugate under G;. Hence
the necessary condition that the general cubic shall be solvable by radicals
is satisfied.

ExampLe 2. Consider the conjugate values z;, z,, ; of z, under Gy*

I, (z:25) Lo
=(1_'11'z), (z75)9, = (z,7,2,) | 2,
gs=(7,2,), (2:2)95=(z,2:7,) | 23
Hence H ={I, (z,2;)} is not self-conjugate under G,. Here

g 'Hg, = {1, (zyz5) } = H, gy~ 'Hgy={I, (z,z)} > H.

40. DerFiNtTIONS. Two substitutions @ and ' of a group G
are called conjugate under G if there exists a substitution ¢ belong-
ing to G such that g~'eag=a’. Then a’ is called the transform
of a by g.

There is a simple method of finding g~'ag without performing
the actual multiplication. Suppose first that a is a circular sub-
stitution, say a=(afyd), while g is any substitution, say

(A
= (BT a=(Gr e R)
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Hence g—'ag=(a/f’y’0") may be obtained by applying the substi-
tution g to the letters of the cycle a=(afy?d).

Let next a=a,a,a,. .., where a,, a,, ... aré circular substitu-
tions. Then

glag=g7"a,9-g7'ag-g7'ag . ..
Hence g—'ag is obtained by applying g within the cycles of a.
Thus (123)—1.(12)(34) - (123) =(23)(14).

CoroLLARY. Since any substitution transforms an even sub-
stitution into an even substitution, the alternating group Gin;is a
self-conjugate subgroup of the symmetric group Gy

41. TueoreM. Of the following groups on four letters:

Gy Gy, G=11, (12)(34), (13)(24), (14)(23)},
G2= {I; (12)(34)} » G1= {I} ’

each 1s a self-conjugate subgroup of lhe preceding group.

By the Corollary of § 40, Gy, is self-conjugate under G,,. To
show that G, is self-conjugate under G,, (as well as under G.,),
we ohserve that G, contains all the substitutions of the type (af)(y9),
while the latter is transformed into a substitution of the form
(«’8)(y'?") by any given substitution on four letters. That G,
is self-conjugate under G, follows from the fact that (12)(34),
(13)(24), (14)(23) all transform (12)(34) into itself.*

42. The necessary condition (§ 39) that the general quartic
z*+az®+ b +cx+d=0

shall be solvable by radicals is satisfied in view of the preceding
theorem. We proceed to determine a chain of binomial resolvent
equations of prime degree which leads to a 24-valued function

V=2—2,+1z3—17,,

** This also follows from § 21, Ex. (f), since rs=sr gives s—lrg=r,
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in terms of which the roots z,, 2,, &5, z, are rationally expressible,
Let

(20) D=2+ TTy Yy=T T+ BTy Ys=T,T,+TrTy

asin § 4. The scheme for the solution is the following;

Gy:a,b,c,d
; i = =) o= ey 20 =) =252
2G; 1 =1+ wy, oy,

9 Iz':l =@+ (2, +2,—2,—2,)
Gl . V =x,—$3+'id',—i$‘
Referring to formule (22), (23), (24) of § 7, and setting P=—4I,
Q=16J, we get
4=16V1 =277,
ac , b bd _c* a’d abc_ b*

Isd—F+1 J=%-1%6" 1618 216

Hence 4 is a root of the binomial resolvent 42=256(I%—27J2).
The resolvent for ¢, is the binomial equation

(p—P)(P—wd)(p—w?d,) =¢*—p*=0.
By Lagrange’s Theorem, ¢,® is a rational function of 4, q, b, ¢, d.
To determine this function, set ¢,=y,+w*,+wy,. Then (§§ 2,7)

¢ —b* =3V =3(y,— %) (1, —¥) (s —y)=—3V =3 4,
62*+ D =2(,"+1,° +45°) + 124,995+ 3(w+w?)d,
where d=y,*y,+¥Y,* + 4%+ ¥iYs* +¥."Ys+yuy,* satisfies the rela-
tions
U+ Y+ Y)Y+ YiYy+ Yals) =0+ 3Y,YoYs,
W+ +95) =30+ 640,05+ 4,° + 9"+ "

o PP+ P =2(y +y,+y5)° — 9, + Yo+ o) (1 + YiYs+ YaYs) + 270,905
=2b°—9b(ac—4d) +27(c*+ a’d— 4bd) = — 432J,
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upon applying the relationsin § 5. Hence

S3=33V-34-216J.
In view of Lagrange’s Theorem, y,, ¥,, and y, are rational funetions

of ¢,. These functions may be determined as follows:

D1Pr=Y>+ 9,2 +¥s* + (0 + )Yy Yo + Y1 Ys +YsYs)
=(%+%+9)’—3Y Y+ Y1Ys +YsYs)
=b*—3ac+12d=H.

H
From y,+y,+ys=b, y+wy,+w’y=¢,, y1+w2yz+wya=$‘:
1

w=i(brat D), Bmi(brrst D), wei(bropr ).

Setting ¢=z,+z,—x,—,, we obtain for A=¢,/t the binomial
resolvent
=g+ (a?—4b+4y,),

upon replacing 2 by its value given in § 5. Next, we have (§ 37)

Vi=(2,—2;)"— (25— 2,)*+ 2i(2, — ) (25— z,)
dab—Sc—a® .
=13 il )

=} (4ab—8c—a®) +3V3 (qSl—{I—).
¢ é1

The values of z,, z,, 7y, , are then given by (41) in connection

with (40).

SERIES OF COMPOSITION OF THE SYMMETRIC GROUP ON n LETTERS.

43. DerFINITIONS. Let a given group (G have a maximal self-
conjugate subgroup H, namely, a self-conjugate subgroup of @
which is not contained in a larger self-conjugate subgroup of G.
Let H have a maximal self-conjugate subgroup K. Such a series
of groups, terminating with the identity group G,

G, H K, ..., M, G,
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That the alternating group is self-conjugate under the symmetric
group was shown in § 40.

Let G, have a self-conjugate subgroup H which contains a
substitution s not the identity 7.

Suppose first that s contains cycles of more than 2 letters:

s=(abc...d)(ef...)...

Let a, B, 0 be any three of the n letters and 7, ¢,..., ¢,...the
remaining n—3 letters. Then H contains the substitutions

8=(afr...0)ep...)eee, 8=QBar...N(d...)...,

the letters indicated by dots in s, being the same as the correspond-
ing letters in s,. The fact that s, (and likewise s,) belongs to H

follows since
a=(abc ...def...
afr... 0ed...

is a substitution on the n letters which transforms s into s, (§ 40),
while any substitution ¢ of G transforms a substitution s of the
self-conjugate subgroup H into a substitution belonging to H
(§ 39). Since H is a group, it contains the product s,s,~?, which
reduces to (a8d). Hence H contains a circular substitution on
3 letters chosen arbitrarily from the n letters. Hence H is either
Gni Or Giny (§ 44).

Suppose next that s contains only transpositions and at least
two transpositions. The case s=(ab)(ac) ...=(abc) ... has been
treated. Let therefore

s=(ab)(cd)(ef) . . . (Im).

Let a, B, 7, 0 be any four of the n letters, and ¢, ¢,..., 4, p the
others. Then the self-conjugate subgroup H contains the sub-
stitutions

s=(ad)(d)(ed) . . . (Ar), 8&=(ar)(Bd)(ep) ... (Ap)
and therefore also the product s,s,~?, which reduces to (ad)(Ay).
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Since n >4, there is a letter p different from a, 8, y, 3. Hence H
contains (ap)(8y) and therefore the product
(a0)(Br) - (an)(Br) = (adp).

It follows as before that H is either G, or Gip,.

Suppose finally that s=(ab). Then the self-conjugate subgroup
H contains every transposition, so that H=Gy,.

46. THEOREM. The alternating group on n>4 letters s simple.

Let G;n: have a self-conjugate subgroup H larger than the
identity group G,. Of the substitutions of H different from the
identical substitution I, consider those which affect the least
number of letters. All the cycles of any one of them must contain
the same number of letters; otherwise a suitable power would
affect fewer letters without reducing to the identity I. Again,
none of these substitutions contains more than 3 letters in any
cycle. For, if H contains

§=(12344...0(...) ...,
then H contains its transform by the even substitution o=(234);
8;=0"150=(13422...0)(...) ...,

where the dots indicate the same letters as in s. Hence H would
contain
ss,"1=(142),
affecting fewer letters than does s. Finally, none of the substi-
tutions in question contain more than a single cycle. For, if H
contains either ¢ or s, where
t=(12)(34) ..., s=(123)(456)...,

it would contain the transform of one of them by the even substi-
tution x=(125) and consequently either t-x~%k or s~'.-x!sx.
The latter leaves 4 unaltered and affects no letter not contained
in s; the former leaves 3 and 4 unaltered and affects but a single
letter 5 not contained in £. In either case, there would be a reduc-
tion in the number of letters affected.

The substitutions, different from I, which affect the least num-
ber of letters are therefore of one of the types (ab), (abc). The
former is excluded as it is odd. Hence H contains a substitution
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(abc). Let a, B, y be any three of the n letters, d, ¢,..., v the
others. Then (abc) is transformed into (afy) by either of the
substitutions

_fabcde...n s_(abcde...n
T™\apfrde...v) *=\apfres...v)

where the dots in r indicate the same letters asin 8. Since r=s(d%),
one of the substitutions r, s is even and hence in G;,:.. Hence,
for n>4, H contains all the circular substitutions on 3 of the n
letters, so that H=Giy,,.

47. It follows from the two preceding theorems that, for n>4,
there is a single series of composition of the symmetric group on n
letters : Gpy, Giny, Gy. The theorem holds also for n=3, since
the only subgroup of @, of order 3 is G, while the three subgroups
of G, of order 2 are not self-conjugate (§ 39, Ex. 2). The case
n=4 is exceptional, since G,; contains the self-conjugate subgroup
G, (§41).

Ezcept for n=4, the factors of composition of the symmetric group
on n letters are 2 and inl.

48. It was proposed in §38 to solve the general equation of
degree n by means of a chain of binomial resolvent equations of
prime degrees such that a root of each is expressible as a rational
function of the roots z,, z,, ..., z, of that general equation. As
shown in §§ 38-39, a necessary condition is the existence of a
series of groups

(46) Gnl’ H; K) ceey M: Gx:

each a self-conjugate subgroup of prime index under the preceding
group. In the language of § 43, this condition requires that G,
shall have a series of composition (46) with the factors of com-
position all prime. By § 47, this condition is not satisfied if n55,
since 4n!is then not prime. But the condition is satisfied if n=3
or if n=4 (§ 39, Ex. 1; § 41). Under the proposed plan of solu-
tion, the general equation of degree n>4 is therefore not solvable
by radicals, whereas the general cubic and general quartic equa-
tions are solvable by radicals under this plan (§ 34, § 42).
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To complete the proof of the impossibility of the solution by
radicals of the general equation of degree n>4, it remains to show
that the proposed plan is the only possible method. This* was
done by Abel (@uvres, vol. 1, page 66) in 1826 by means of the
theorem:

Every equation which 13 solvable by radicals can be reduced to a
chain of binomial equations of prime degrees whose roots are rational
functions of the roots of the given equation.

As the direct proof of this proposition from our present stand-
point is quite lengthy, it will be deferred to Part II (see § 94),
where a proof is given in connection with the more general theory
due to Galois,

EXERCISES.

1. Xf H={I,h,,...,hp} is a subgroup of G of index 2, H is self-conjugate
under G.

Hint: The substitutions of G not in H may be written g, gh,, .. ., ghp;
or also g, hyg,.. ., hpg. Hence every hgg is some ghq, s0 that for every hg,
g 'hgg is some ha.

2. The group G; of §21 has the self-conjugate subgroups G,, G,, H,,
C,={I, (1324), (12)(34), (1423)}. The only remaining self-conjugate sub-
groups are G, and G,.

3. If a group contains all the circular substitutions on m+2 letters, it
contains all the circular substitutions on m letters. Hint:

(123.. mm+1m4+2)(mm—1...32m+21m+1)=(123...m—1m).

4. Compute directly the function ¢,® of § 34 as follows:
1t =70 + 23° + 2 + 62,2523 + B0(2, %, + 2,2, + 25°%3) + 8w (32,7 + 7,2y + 757,7)
=2, +20 423} + 62250 — (5,0 + 2%+ 20 + 2% + 5+ 2 T) — Y =34,
since

202y — 2,2 + 2,837 — 2,303 + 23Ty — 23757 = — (2, — 2,) (73— 2,) (7, —2) = — 4.
Twice the remaining part of ¢,* equals 2¢,*—9c,c,+27¢; by § 3.

5. Compute directly the coefficients in § 36 as follows:

4L 4+t =322 —2 312y =302 —8b,
tbty= 22, +2 22,232y — Z2,(2,* + 7, +,7)
=237,3+ 2222,y — Zx. 5% =4ab —8c—a®.

* For the simpler demonstration by Wantzel, see Serret, Algdbre, II, 4th
or 5th Edition, p. 512,
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Again, the roots of z*+1=0 are

T,=¢, T,=1lE, Ly=—¢, T,=—1¢ (sw .
i PRI | s Ly NG

Hence z,2=¢?=1, z,2,=¢?=1. The functions z,? and z,z, differ
in form, but are equal numerically. Also,z,? equals z,?, but differs
from z,? and z,2. The 12 substitutions which leave z,? numerically
unaltered are 1,(23),(24),(34),(234),(243),(13),(13)(24),(213),(413),
(4213), (4132), the first six leaving z,? formally unaltered and the
last six replacing z,2 by z2. They do not form a group, since the
product (13)(23) is not one of the set.

There are consequently essential difficulties in passing from
the theory of the general equation to that of special equations.
This important step was made by Galois.* )

In rebuilding our theory, special attention must be given to
the nature of the coefficients of the equation under discussion,

(1) ar—cx et i — ... +(—1)mc,=0.

Here c,,...,cn, may be definite constants, or independent
variables, or rational functions of other variables. Whereas, in
the Lagrange theory, roots of unity and other constants were
employed without special notice being taken, in the Galois theory,
particular attention is paid to the nature of all new constants
introduced.

50. Domain of Rationality. To specify accurately what
shall be understood to be a solution to a given problem, we must
state the nature of the quantities to be allowed to appear in the
solution. For example, we may demand as a solution a real num-

* fvariste Galois was killed in a duel in 1832 at the age of 21. His chief
memoir was rejected by the French Academy as lacking rigorous proofs.
The night before the duel, he sent to his friend Auguste Chevalier an account
of his work including numerous important theorems without proof. The
sixty pages constituting the collected works of Galois appeared, fifteen years
after they were written, in the Journal de mathématiques (1846), and in
@uvres mathématiques D' EVARISTE GALOIS, avec une introduction par
M. Emile Picard, Paris 1897.
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in connection with a domain of rationality B. An integral rational
function for R of certain quantities u, v, w, . . . is an expression
3 ‘Ji""cvk... ulwk ., .,
where 1, 7, k, . . . are positive integers, and each coefficient Cyy . . .
is a quantity belonging to R. The quotient of two such functions
(3) is a rational function for R.
Thus, 3u+4/2 is a rational function of % in (V/2), but not in (1).
62. Equality. As remarked in § 49, two expressions involving
only constants are regarded as equal when their numerical values
are the same. Consider two rational functions

Py, v,w,...), ¢u,vw,...)

with coefficients in a domain R=(R’, R”,..., R®). In case R’,
R”,... are all constants, we say that ¢ and ¢ are equal if, for
every set of numerical values u,, v, w,, ... which u, v, w, ... can
assume, the resulting numerical values of ¢ and ¢ are equal. In
case R’, R”,..., R"® depend upon certain independent variables
v, r’, ..., rm, we say that ¢ and ¢ are equal if, for every set of
numerical values which u, v, w,..., 7, 7’,..., r™ may assume,
the resulting numerical values of ¢ and ¢ are equal. When not
equal in this sense, ¢ and ¢ are said to be distinct or different.

For example, if u and v are the roots of 2?42pz+1=0, the functions
u+v and —2puv are rational functions in the domain (p), and these rational
functions are equal.

DerFINITION. A rational function ¢(z,,..., x,) is said to be
unaltered by a substitution 8 on z,,..., z, if the function
Pu(zyy . . ., Tn) is equal to ¢ in the sense just explained. For
brevity, we shall often say that ¢ then remains numerically un-
altered by s. If z,, 2,,..., z, are independent variables, as in
Lagrange’s theory, and if ¢, is identically equal to ¢, i.e., for all
values of z,,..., Z,, we say that ¢ remains formally unaltered
by s. For examples, see § 49. .

53. The preceding definitions are generalizations of those
employed in the Lagrange theory. The so-called general equation
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At least one £ equals an 7. Let &§,=7,,..., §=1,, while the
remaining §’s differ from each 7. Then the functlon

H@x)=x—-§)...z=&)=@—1) ...(x—1,)

is the highest common factor of F(z) and G(zx). But Euclid’s
process for finding this highest common factor involves only
the operation division, so that the coefficients of H(z) are
rational functions of those of F(z) and G(x) and consequently
belong to the domain R. Hence F(z)=H(z)-Q(x), where H(x)
and Q(z) are integral functions with coefficients in B. Since F(z)
is irreducible in R, @(z) must be a constant, evidently 1. Hence
F(x)=H(x), so that F(x) is a divisor of G(z) in R. :

CoroLLARY I. If G(z) is of degree Sn—1, then G(z)=0. A
root of an irreducible equation in R does not satisfy an equation
of lower degree in R.

CoroLrary II. If also G(x)=0 is irreducible, then G(z) is a
divisor of F(z), as well as F(x) a divisor of G(z). If two vrreducible
equations in R have one root tn common, they are identical.



CHAPTER VI
THE GROUP OF AN EQUATION.

EXISTENCE OF AN 7n!-VALUED FUNCTION; GALOIS' RESOLVENT.
56. Let there be given a domain R and an equation

1 f@)y=azr—ca® +ea" " — ... +(=1)"ca=0,

whose coefficients belong to R. We assume that its roots z,,
%, ..., &n are all distinct* It is then possible to construct a
rational function V, of the roots with coefficients in R such that
V, takes n! distinct values under the n! substitutionsonz, , ..., Z,.
Such a function is

Vi=mz,+mz,+ . .. +MpZy,

if m,,...,m, are properly chosen in the domain R. Indeed,
the two values V, and V;, derived from V, by two distinct sub-
stitutions ¢ and b respectively, are not equal for all values of
my,...,M,, since z,,...,z, are all distinct. It is therefore
possible to choose values of m,, ..., m, in R which satisfy none
of the in!(n!—1) relations of the form V,=V,.

Then from an equation Vo=V, will follow a’=a.

As an example, consider the equation z*+z?+z+1 =0, with the roots
Z=—1, Zy=+4i=mq/—1, z3=—i,
and let R be the domain of all rational numbers. The six functions
=Myt iMy— iy, —My —imy iy, iy —1my —imy,
—imy+1my—my, —IM—My+UMy, IMy—1My—My,

* Equal roots of F(z) =0 satisfy also F'(x) =0, whose coefficients likewise
belong to R, and consequently also H(z) =0, where H(z) is the highest com-
mon factor of F(z) and F'(z). If F(z)-+ H(z)=Q(z), the equation Q(z)=0
has its coefficients in R and has distinct roots. After solving Q(z) =0, the
roots of F(z) =0 are all known.

48
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arising from the 3! permutations of z,, z,, z,, will all be distinct if no one of
the following relations holds:
Mmy—my=0, my—my=0, m—m,=0,
@+1)m—2im+(E—1)m; =0,  ({—1)m;+(i+1)m,—2imy =0,
(t—1)ym—2imy+(1+1)my =0, (t+1)m,+ (@ —1)my—2im, =0,
—2im, + (i —1)my+ (¢ +1)m, =0, —2im, + (¢ +1)my+ (1 —1)my =0,
of which the last six differ only by permutations of m,, m,, my. We may,
for example, take my;=0 and any rational values »0 for m, and m, such
that m,=cm,, where cis 1, +¢,1+7, $(1+7). Thus mz, +z, is a six-valued
function in R if m, is any rational number different from 0 and 1.

[In the domain (%), we may take mx,+x,, where m,0, 1, +7, 143,
3(1+9).]

57. The n! values of the function V, are the roots of an equation
C)) FV)=(V=-V)(V=V))...(V=Va)=0,

whose coefficients are integral rational functions of m,, ..., my,
¢y .+ - « , Cn With integral coefficients and hence belong to the domain
R (§ 50). If F(V) is reducible in R, let F¢(V) be that irreducible
factor for which F(V,)=0; if F(V) is irreducible in R, let F (V)
be F(V) itself. Then '
() F(V)=0
18 an trreducible equation called the Galois resolvent of equation (1).
Recurring to the example of the preceding section, take
Vi=2,—z,, Vi=2,—3;, Vy=12,—2,

Then the six values of V, are +V,, +V,, +V,, where

Vi=i+l, Vy=2i, Vy=—i+l.
The equation (4) now becomes

M=V )(V=V)(V2=V) =(VI=20)(V? +4)(V?+2)
=Ve4+4V4+4V?+16=0.

The irreducible factors of F(V) in the domain of rational numbers are
Vi+a=(V=V)(V+V), VI-2V+2=(V=V)(V=Vp,
V2V +2=(V+VY)(V+V)Y.

The Galois resolvent (5) is therefore
Fy(V)=V3—2V +2=0.
[For the domain (), the Galois resolvent is V—V; =V —1—1=0,]
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58. THEOREM. Any rational function, with coefficients in a
domain R, of the roots of the given equation (1) s a rational function,
with coefficients in R, of an n'-valued function V,:

(6) . ¢(zn Loy oeny xn)=¢(V1)-

Let first the coefficients c;, . . ., ¢, in equation (1) be arbitrary
quantities so that the roots z,, ..., z, are independent variables.
We may then apply the proof in § 31 of Lagrange’s Theorem,
taking for ¢ the function V, which is unaltered by the identical
substitution alone, and obtain a relation

(6" ¢=AV)+F'(V)),
where F’(V) is the derivative of F(V) defined by (4). We next
give to ¢y, . . ., ¢, their special values in R, so that z,, . . ., z, become

the roots of the given equation. Since F'(V,)#0, relation (6’)
becomes the desired relation (6), expressing ¢ as a rational functlon
of V, with coefficients in R.

CoroLLARY. If s be any substitution on the letters z,, . . . , z,, then

) ¢l(xlr Tayevey zn)=0(V,),

provided no reduction* in the form of @(V,) has been made by
means of the equation Fy(V,)=0 of § 57.

]

As an example, we recur to the equation z*+z?+z+1=0, and seek an
expression for the function ¢=uz, in terms of V,=z,—~z,. Then

F(V)=V*+4V*+4V+16, F'(V)=6V’+16V*+8V,

_ z, z, T, Zy z z,
AN =F) { /58 R 7 aa e s Al G AL G 4 }
=—2V5—4V*-12V*—8V?—16¥ —48, .
upon setting ;= —1, £, =1, 23=—1, Vy=1+1, V,=2{, Vy=—¢+1. Hence
VY _ =2V 5—4V,4—12V*—8V,*—16V,—48 _ oy
STy 6V S+16V 3 +8V, =Y.
In verification, we find that
V) =Ai+1)=—48i—16, F'(V,))=16i—48, O(V) =i=z,

>

* That such a reduction invalidates the result is illustrated in the exa.mple
of § 59. .
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In view of the corollary, we should have
Ty= o( _Vl)p Ty= o(VI)y Ty= 0(V3)p Ty= o( "Vz), Ty = 0(_V8)'
To verify' these results, we note that

16:—48 —80 . 80 .
—16i+48=_1’ ¢(V:)-————-z o(— V,)_ =_,"
while @#(V,) and @(V,), #(—V,), and #(—V)), 2, and z, are conjugate
imaginaries, and z, is real.

o(—V)=

59. As a special case of the preceding theorem, the roots of the
given equalion are rational functions of V, with coefficients in R:

® =GV, =V, -« ., Ta=¢n(V)).

Hence the determination of V,'is equivalent to the solution of the
given equation.

Since each V, is a rational function of z,, . . ., Z, w1th coefficients
in R, it follows that all the roots of the Galois resolvent are rational
functions with coeffictents in R of any one root V,.

- EXAMPI:..E. For the equation z*+2*+z+1=0, and V,=z,—z,, we have
y=—1, z3=V,—1, z3=—-V,+1, V,=2V,-2, V,=-V,+2.

Although z, and V,—1 are numerically equal, the functionsz, and —V,—1,
obtained by applying the substitution (z,z;), are not equal. The relation
z,=V,—1 is a reduced form of z,=®(V,), obtained in virtue of the identity
V2—2V,+2=0 (§ 57). Thus

—2V,5—4V,4— 12V, —8V 3 — 16V, —48 = —48V, +32,
6V,5+16V,2+8V,=16V,—

—48V1+32 _(= 3Vl+2)(V1+2) —3Vl —4V,+4 _—10V,+10

=V,—1.

It happens, however, that the equality z,=V,—1 leads to an equality
2,=Vs--1=—V,+1 upon applying the substitution (z,z;). The fact that
the identical substitution and (z,%g), but no other substitutions on z,, z,, =,
lead to an equality when applied to z,=V,;~1 finds its explanatlon in the
general theorems next established.
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THE GROUP OF AN EQUATION.
60. Let the roots of Galois’ resolvent (5) be designated

(9) Vv Var Vb: ceey Vb
the substitutions by which they are derived from V, being
(10) ILab,..., 1L

These substitutions form a group G, called the group of the given
equation (1) with respect to the domain of rationality R.

The proof consists in showing that, if r and s are any two of
the substitutions (10), the product 78 occurs among those substi-
tutions. Let therefore V, and V, be roots of (5). Then

Fy(V,)=0.
Now V., is a rational function of V, with coefficients in R:
(11) ‘ V.=0(V,),

the function 8 being left in its unreduced form as determined in § 58.
Hence F[0(V,)]=0, so that one root V, of the equation (5) irre-
ducible in R satisfies the equation

(12) FJ6(V)]=0,
with coefficients in R. Hence (§ 55) the root V, of (5) satisfies (12).
‘ . FJO(V )]=0.
In view of the corollary of § 58, it follows from (11) that
(Vi)e=V0u=0(V,).

Hence F(V,,)=0, so that V,, occurs among the roots (9).

ExampLE. For the equation z°+2z?+ 2+ 1 =0 and the domain R of rational
numbers, the Galois resolvent was shown in § 57 to be V?—2V 42 =0, having
the roots V, and V,. Since V, was derived from V, by the substitution (z,zy),
the group of the equation 2®+z?+z+1 =0 with respect to R is {I, (z,2,) }.

For the domain (z), the Galois resolvent was shown to be V—V,=0.
Hence the group of the equation with respect to (7) is the identity.
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equal to the quantity zero belonging to R, and therefore (by B)
is unaltered by every substitution s of G. Hence ¢,—¢,=¢—¢=0,
so that ¢,=¢,. Hence the result:

Any rational relation between the roots remains true if both
members be operated upon by any substitution of the group G.
" Exampre. For the domain of rational numbers, it was shown in § 60
that the equation z®+2z?+2z+1=0 has the group {I, (z;z))}. The rational
relation (§ 59, Example)

' =V,—l=5—z,—1

leads to & true relation zy=z,—z,—1=V;—1 under the substitution (z,z;).
If we apply (z,z,), we obtain a false relation z, =z, —z,—1.

83. THEOREM. Properties A and B completely define the group G
of the equation : any group having these properties is identical with G.
Suppose first that we know of a group

@={I, a, V,... o)

that every rational function of the roots z,, . . ., z,, which remains
unaltered by all the substitutions of G’, lies in R. The equation

F(M)=(V-V)(V-=-V)(V=Vy)...(V=Vp)=0

has its coefficients in R since they are symmetric functions of
Vi Vaty..., Ve and therefore unaltered by the substitutions
of @’. Since F’(V)=0 admits the root V, of the irreducible Galois
resolvent (5), it admits all the roots V,, V,, ..., Vi of (5). Hence
I, a,..., 1 occur among the substitutions of @, so that @ is a
subgroup of . ' ' '

. Suppose next that we know of a group

G’={I, a, v,..., 7'}
that every rational function of z,, ..., z, which lies in R remains
unaltered by all the substitutions of G””. Then the rational function

F(V),), being equal to the quantity zero lying in R, remains un- -
altered by a”, b, ..., 7, so that

0=F(V)=F(Va)=F(Ver)= ... =F(V).
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Hence V,, V,», ..., V,” occur among the roots V;, V,,..., V; of
FyV)=0. Hence G” is a subgroup of G. -

If both properties hold for a group, G’=G"'; then @’ contains
G as a subgroup and G’ is a subgroup of G. Hence ¢’=G"=G.

It follows that the group of a given equation for a given domain
18 unique. In particular, the group of an equation is independent
of the special n!valued function V, chosen.

ExampLe. For the equation z*+z?*+2+1=0 and the domain R of all
rational numbers, the functions £V,, £V,, £V, of § 57 are each 6-valued.
Employing V,, we obtain the Galois resolvent

V=V (V-Vy)=V2-2V+2=0
and the group {I, z,z;)}. Evidently no change results from the employment
of V5. If we employ either —V, or —V,, we obtain the Galois resolvent
(V+VY(V+V) =V1+2V+2=0
and the group {I, (z,2,)}. If we employ either V, or —V,, we get
(V=V)(V+Vy)=Vi+4=0. )
Since V,=z,—z;, the substitution replacing V, by —V, is (z;z;), so that
the group is again {I, (z,zy)}.

ACTUAL DETERMINATION OF THE GROUP G OF A GIVEN EQUATION.

64. Group of the general equation of degree n. Its coefficients
¢y, . . . ,Cq are independent variables, and likewise its roots (p. 101).
We proceed to show that, for a domain R containing the coefficients
and any assigned constanis, the group of the general equation of
degree n 13 the symmetric group Gpi. It is only necessary to show
that the Galois resolvent F(V)=0 is of degree nl. In the relation
Fy(V)=0, we replace V, and the coefficients c,,.... ¢y by their
expressions in terms of z,, . . ., Z,. Since the latter are independent,
the resulting relation must be an identity (see p. 101) and hence
remain true after any permutation of z,,...,z, By suitable
permutations,V, is changed into V,, .. .. Vy in turn, whilec,, . . ., ¢n,
being symmetric functions, remain unaltered. Hence Fy(V,)=0,
vevy F(Va)=0. Hence F(V)=0 has n! distinct roots.

Another proof follows from § 63 by noting that properties A
and B hold for the symmetric group Gy,; when z,, . .., 25 are inde-
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8. 28—2=0. [z,, z,, z; and (z, —z,)(z; —z;)(x;—z,) are irrational.]

4, 428 +2°+2+1=0 with roots z,=¢, z,=¢%, z,=¢%, z,=¢%, where
¢ is an imaginary fifth root of unity. Since the resolvent for z,z;+zs, is
y*—y?—3y+2=0 with the roots 2, 3(—1+4/5), G is a subgroup of G
The latter has the subgroup C,= {1, (1234), (13)(24), (1432)}, to which belongs
1 =222, + 2,2y + 2522+ x,°2,. Here ¢, =c*+ 3+ e+ 2= —1 is rational. The
tix conjugates to ¢, under G, are distinct; they are obtained from ¢, by
applying I, (12)(34), (12), (14), (23), (34); their values are —1, 4, 1+42¢+ &8,
1+26%+ ¢4, 14+26%+¢6, 1+2¢*+¢?, respectively. Hence G is a subgroup
of C,. To Gj={I, (13)(24)} belongs

(@, — 25+ i1, —12) = (1+20) (2 + S — et — &) = +£A/5(1 +20).
Hence G<G;. Evidently G<G,. Hence G=C,.

5. Show that, for the domain (1, ¢), the group of z*+1=0 is Gj.

6. Show that, for the domain (1, w), w=imaginary cube root of unity,
the group of z°—2=0 is Cy={I, (z,2,2,), (2,7:7,) }.

Hint: (z,+ wz,+w?z)® and (, + 0z, + wz,)® have distinct rational values.

TRANSITIVITY OF GROUP; IRREDUCIBILITY OF EQUATION.

66. A group of substitutions on n letters is transitive if it
contains a substitution which replaces an arbitrarily given letter
by another arbitrarily given letter; otherwise the group is intran-
sitive,

Thus the group G, = {1, (2:z,)(2sz)), (:25)(2:2,), (2,2,)(25%,) } is transitive;
I replaces x, by z,, (z,2,)(z;z,) replaces z; by z,, (2,%5)(2,%,) replaces z, by =,
(zx)(x,xs) replaces z; by z,, Having a substitution s which replaces =z,
by any given letter z; and a substitution ¢ which replaces z, by any given

letter z;, the group necessarily contains a substitution which replaces ¢
by z;, namely, the product s—*¢.

The group H,= {1, (z:zy), (252), (2,2,)(2sx,)} is intransitive.

67. THEOREM. The order of a transitive group on n letters i3
divisible by n.

Of the substitutions of the given group @, those leaving z,
unaltered form a subgroup H={I, h,, ..., h.}. Consider a rect-
angular array (§ 28) of the substitutions of G with those of H in
the first row, choosing as g, any substitution replacing z, by z,,
as g, any substitution replacing z, by z,, etc. Then all the sub-
stitutions of the second row and no others will replace z, by z,,



Sec. 68] THEORY OF ALGEBRAIC EQUATIONS.. 59

all of the third row and no others will replace z, by z,, ete. Sinc=
G is transitive, there are v=n rows. But the order of @ is
divisible by v (§ 26). :

Examples of transitive groups: Gy®), G, G,,(9, G,(9, G, G(*.

The least order of a transitive group on 7 letters is therefore n.
A transitive group on n letters of order 7 is called a regular group.
Thus G,® and G* are regular.

68. THEOREM. If an equation 18 irreducible for the domain R,
its group for R 18 transitive; if reducible, the group is iniransitive.

First, if f(x)=0 is irreducible in R, its group for R is transitive.
For, if intransitive, G contains substitutions replacing z, by z,,
Ty ..., Tm, Dut not by m4y, ..., s, the notation for the roots
being properly chosen. Hence every substitution of G permutes
Z,..., T, amongst themselves and therefore leaves unaltered
any symmetric function of them. Hence the function g(z)=
(x—2z)(z—1,) . ..(z—z,) has its coefficients in R, so that g(z)
is a rational factor of f(z), contrary to the irreducibility of f(z).

Let next f(z) be reducible in R and let g(z)=(x—=z,) ... (z—2,)
be a rational factor of f(z), m being<n. The rational relation
g(z,)=0 remains true if operated upon by any substitution of G
(§ 62). Hence no substitution of @ can replace z, by one of the
root8 Zpmyy, - - « 5 Tn; for, if so, g(x)=0 would have as root one of
the quantities £y, . . ., 2y, contrary to assumption. Hence @ is
intransitive.

ExampLE 1. The equation z*—1=0 is reducible in the domain R of
rational numbers; its group for R is {I, (z,25)} by § 65, Ex. 1, and is intran-
sitive. A like result holds for z8+z?*+z+1=0 (§ 60).

ExampLE 2. The equation y*—7y+7=0 is irreducible in the domain
R of rational numbers, since its left member has no linear factor in R (§ 65,
Ex. 2). Hence its group for R is transitive. By § 65, the group is G;®.

ExampLE 3. The equation z*+1=0 is irreducible in the domain R of
rational numbers (§ 54, Ex. 2). Hence its group for R is transitive, and
so is of order at least 4. We may therefore greatly simplify the work in
§ 65, Ex. 3, for the determination of the group G.

ExamrLE 4. The equation z*+1=0 is reducible in the domain (1, 7).
Its group G is intransitive (see Ex. 5, page 58).
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RATIONAL FUNCTIONS BELONGING TO A GROUP.

69. THEOREM. Those substitutions of the group G of an equation
which leave unaltered a rational function ¢ of its roots form a group.

Let I, a, b,..., k be all the substitutions of G which leave ¢
unaltered (in the numerical sense, § 52). Apply to the rational
relation ¢=¢, the substitution b of the group G. Then (§ 62)
Po=cpep. Hence ¢pep=¢, so that the product ab is one of the
substitutions leaving ¢ unaltered. Hence the substitutions I,
a,b,...,kform a group H.

No matter what group ¢ belongs to formally (§ 21), we shall
henceforth say that ¢ belongs to the group H, a subgroup of G.

ExampLE. For the domain R of rational numbers the group of z¢+1=0is

={I, (z,7,)(z57)), (2,23) (23%,), (2,2 (;%) },

by § 65, Ex. 3. Of the 12 substitutions which leave z,? numerically unaltered
(§ 49), only I and (z,zy)(x;x,) occur in G,. Hence the func@ion z,? of the
roots of z*+ 1 =0 belongs to the group {1, (z,z;)(z3x,)}.

70. TueorEM. If H 1is any subgroup of the group G of a given
equation for a domain R, there exists a rational function of its roots
with coeffictents in R which belongs to H.

Let V, be any ntvalued function of the roots with coefficients
in R (§56). Let V,, V,, ..., Vi be the functions derived from
V, by applying the substitutions of H. Then the product

¢=(—V)(—Va)...(e—Vy)

in which p is a suitably chosen quantity in R, is a rational function
of the roots with coefficients in R which belongs to H (compare
§ 25). J

71. TueoreM. If a rational function ¢ of the roots of an equation
belongs to a subgroup H of index v under the group G of the equation
for a domain R, then ¢ takes v distinct values when operated upon
by all the substitutions of G; they are the roots of a resolvent equation
with coeffictents in R,

(15) IN=Y—)y—¢,) ... (y—¢,)=0.
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The proof that there are exactly v distinct values of ¢ under the
substitutions of G is the same as in § 29, the term distinct now
having the meaning given in § 52.

Any substitution of the group G merely permutes the functions
&1y ¢y « -+ ¢y (compare § 30), so that any symmetric function of
them is unaltered by all the substitutions of G and hence equals a
quantity in R (Theorem A, § 61). Hence the coefficients of (15)
lie in R.

REMARK. The resolvent equation (15) is irreducible in R.

Let y(y) be a rational factor of g(y). Applying to the rational
relation y(¢$,)=0 the substitutions of G, we get r(¢,)=0,...,
7(¢,)=0. Hence y(y)=0 admits all the roots of g(y)=0, so that

@) =9

ExamrLg 1. For the domain R of rational numbers, the group G of
22+ 23+z+1=0is {I, (z,z5)}, by § 60. The conjugates to z,—z, under G
are ¢, =z,~x,, ¢, =23—z;. They are the roots of

Y=+ )Y+ =y*—2y+2=0.

ExampLe 2, For the domain (1, ), the groupGof z*+1 =0is {I,(z,z,)(z,2,) },
by Ex. 5, page 58, employing the notation of § 49 for the roots. The con-
jugates to z; under G are ¢; =x,, ¢;,==z,. They are the roots of

Y —(e—e)y+e(—e) =y’—i=0,
Tt is irreducible in (1, 5), since A/7=(1+1) +4/2.

72. LAGRANGE’S THEOREM GENERALIZED BY Gavrois. If a
rational function ¢(z,, ,, . . ., T,) of the roots of an equation f(x)=0
with coefficients in a domain R remains unaltered by all those sub-
stitutions of the group G of f(x)=0 which leave another rational
function §(z,, z,, . . ., Tn) unaltered, then ¢ i3 a rational function of
¢ with coefficients in R.

The function ¢ belongs to a certain subgroup H of G, say of
index v. By means of a rectangular array of the substitutions
of @ with those of H in the first row, we obtain the v distinct con-
jugate functions ¢,, ¢, . . ., ¢, and a set of functions ¢,, ¢, . . ., Py,
not necessarily distinet, but such that a substitution of @ which
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74. In general, we are given a domain R=(R’, R”,...) and
an equation f(z)=0 with coefficients in that domain. Let G be
its group for R. Adjoin a quantity §. The irreducible Galois
resolvent F,(V)=0 for the initial domain R may become reducible
in the enlarged domain R,=(¢; R’, R”,...). Let AV, &) be
that factor of F(V) which is rational and irreducible in R, and
vanishes for V=V,. If V,, V,,..., Viare the roots of A(V, £§)=0,
then @={I, q, ..., k} is the group of f(z)=0 in R, (§ 57). Hence
@ is a subgroup of G, including the possibility G’=G, which occurs
if F(V) remains irreducible after the adjunction of £, so that
AV, §)=Fy (V).

THEOREM. By an adjunction, the group G 18 reduced to a sub-
group G'.

75. Suppose that, as in the examples in § 73, the quantity
adjoined to the given domain R is a rational function ¢(z,, z,, . . ., Zn)
of the roots with coefficients in R.

THEOREM. By the adjunction of a rational function §(z,, . ..,zn)
belonging to a subgroup H of G, the group G of the equation vs reduced
precisely to the subgroup H.

It is to be shown that the group H has the two characteristic
properties (§ 61) of the group of the equation for the new domain
R,=(¢; R, R”,...). First, any rational function ¢(z,,...,zs)
which remains unaltered by all the substitutions of H is a rational
function of ¢ with coefficients in R (§ 72) and hence lies in R,.
Second, any rational function ¢(z,, . . ., z,) which equals a quantity
p in R, remains unaltered by all the substitutions of H. For the
relation ¢=p may be expressed as a rational relation in R and
hence leads to a true relation when operated upon by any sub-
stitution of @G (§ 62) and, in particular, by the substitutions of
the subgroup H. The latter leave ¢, and hence also p, unaltered.
Hence the left member ¢ of the relation remains unaltered by all
the substitutions of H. .



CHAPTER VII.

SOLUTION BY_MEANS OF RESOLVENT EQUATIONS,

76. Before developing the theory further, it is desirable to
obtain a preview of the applications to be made to the solution
of any given equation f(z)=0. Suppose that we are able to solve
the resolvent equation (15), one of whose roots is the rational
function ¢ belonging to the subgroup H of the group G of f(x)=0.
Since ¢ is then known, it may be adjoined to the given domain
of rationality (R’, R”,...). For the enlarged domain R,=
(¢; R', R"”,...), the group of f(z)=0 is H. Let y(z,,...,zn)
be a rational function with coefficients in R, which belongs to a
subgroup K of H. Suppose that we are able to solve the resolvent
equation one of whose roots is . Then y may be adjoined to the
domain R,. For the enlarged domain R,=(y, ¢; R’, R",...), the
group of f(x)=0 is K. Proceeding in this way, we reach a final
domain Ry, for which the group of f(x)=0 is the identity G;. Then
the roots z,, . ..,Z,, being unaltered by the identity, lie in this
domain R, (property A, § 61). The solution of f(x)=0 may there-
fore be accomplished if all the resolvent equations can be solved.
To apply Galois’ methods to the solution of each resolvent, the
first step is to find its group for the corresponding domain of
rationality.

77. Isomorphism. Let G be the group of a given equation
f(x)=0 for a given domain R. Let ¢(x,,...,z,) be a rational
function of its roots with coefficients in R and let ¢ belong to a
subgroup H of index v under G. Consider a rectangular array

64
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of the substitutions of G with those of H in the first row, and the
resulting functions conjugate to ¢:

h=I h ... bp | $=¢
[/ h.g, kpg, | $2=dq,

v kg <. hegy| $v=4,,
Apply any substitution g of the group G to the v conjugates

(16) $s oy bagever Poue
The resulting functions
(17) S[’ﬂr ¢030: ‘/’aaw LA ] ¢0,0

are merely a permutation of the functions (16), as shown in § 29,
Hence to any substitution g of the group G on the letters z,, . . ., 2y,
there corresponds one definite substitution

(¢ Yo --- ‘/’a,)E(Sl'w)
=, bugo -+ Yo,0) = \uge
on the letters (16). We therefore obtain * a set I" of substitutions
7, not all of which are distinct in certain cases (Exs. 2 and 3 below).
THEOREM. The set I' of substitutions y forms a group.
For to g, ¢/, and gg’ correspond respectively

- Sba') = (Ye; ) ' — (Vo )

T _ (Sbﬂ:a » 7 (Sl’a;a' » T (¢a,-ao’ :

To compute the product y7’, we vary the order cf the letters in the
first line of 7 and have

r=(e ) = (0,)=7"

Hence if I contains y and 7, it contains the product r7’.
Since I' contains a substitution replacing ¢ by ¢, for any
$=1,...,v, the group I' is transitive (§ 66).

* For a definition of I" without using the function ¢, see § 104,
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DerFiniTIONS. The group I is said to be isomorphic to @, since
to every substitution g of G corresponds one substitution y of I,
and to the product g’ of any two substitutions of G corresponds
the product yy’ of the two corresponding substitutions of I". If,
inversely, to every substitution of I' corresponds but one substi-
tution of @, the groups are said to be simply isomorphic;* other-
wise, multiply isomorphic.*

ExampLE 1. Let G=G®), H=G,, § =z,+ wz,+w?z,. Set (compa.ré §9)
¢l=¢1 ¢2=¢¢, ‘/’a=¢b: ¢4=¢¢: ¢6=¢d: ¢0=¢¢°

‘Then a =(z,z,%,) replaces ¢, by ¢, =w?¢,, and ¢, by fy=w¢,. Hence a replaces
¢; by w'd=¢s, ¢s by 0’y =4, ¢ by w¥p=¢y, ¢5 by w*$;=¢,. Hence to a
corresponds a=(¢,0:05)(Jufeds). Similarly, we find that to ¢=(z,z;) corre-

sponds r=(¢1¢)(¢2¢5)(¢sfs). Hence to b=a? corresponds f=a? to d=a—'ca
corresponds & =a~'ya, to e=b—'cb corresponds ¢=8—'yf. We have therefore
the following holoedric isomorphism between G' and I':

I I

a=(z,7,7y) a=(10205) (PPeds)
b=(zz57;) .| B=(41¢s02)(Pudse)
c=(z,zy) 7 =(010)($2d5) (dshd)
d=(zy) 0 =(¢2¢) (¢s¢4) ($1¢0)
e=(z,7;) e=(¢s¢) (4100) (4200

It may be verified directly that to b, d, e correspond B, 3, e, re'spectively.
N Since I, a, 8, 7, 3, € Teplace ¢, by ¢y, ¢, ¢s, ¢4, s, ¢s, Tespectively, I' is tran-
mtlg;nnpm 2. Let G=G,,(9, H=G,, { =(z,—z,)(z;—z). Set
h=¢, d=(@—2)(2,—2), ¢sy=(2,—2)(T3—2)).
We obtain the following meriedric isomorphism between @ and I':
I, (22 (257), (@) (220, (Tz)(zsy) |1

(z232), (z1737), (z42473), (22,70 (¢199)
(zz2y), (T7%), (z12525), (€X XN (¢1¢s¢2)

The group I' is transitive since it contains substitutions replacing ¢, by
$1, ¥ OF .

* Other terms are holoedric and meriedric for simple and multiple
isomorphism,
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78. Order of the group I'. To find the number of distinet
substitutions in I", we seek the conditions under which two sub-
stitutions y and y’ of I are identical. Using the notation of § 77,
the conditions are

¢ﬂ,’ﬂ=¢'ﬂ¢0' (¢=1,2,...,v),

if we set g,=1. Applying to this identity the substitution g~'¢,™?,
we get

$=do, o109,

Hence g.9’9~'9;~*=h, where h is some substitution leaving ¢ unal-
tered and hence in the group H. Then

glg—l=g‘._lhg‘- ('l:= 1, 2, ceoy v)-

But g, 'hg; belongs to the group H;=g,~'Hg; of the function ¢y
(§ 39). Hence g’g—* belongs simultaneously to H,, H,,..., H,,
and therefore to their greatest common subgroup J. .

Inversely, any substitution o of J leaves ¢y, ¢, ..., ¢, unal-
tered and hence corresponds to the identity in I'. Then g and
¢ =ag correspond to substitutions y and y’ which are identical.

If G s of order k and if the greatest common subgroup J of H,,
H,, ...,H, i of order j, then I is of order k/j.

ExampLE 1. For G=G,, H=G,, the order of I" is 6 (§ 77, Ex. 1).

Exameie 2. For G=G\?, H=G, (§ 77, Ex. 2), we have H,=H,=H,,
since G, is self-conjugate under Gy; (§ 41). Hence k=12, j=4, so that the
order of I' is 3.

ExampLE 3. For G==G'(;‘), H, =Gy, ¢ =zx,+257,, we set (§ 29, Ex. 2)

h=22;+2%,, =TT+, $y=T,T+T,T;

Then H,=G, H,=G;, Hy=Gy’, J=G, (§21). Hence I' is of order 24 =6.
This result may be verified directly. There are only 6 possible substitutions
on 3 letters ¢y, ¢,, ¢s. But the substitutions of G which lead to the identical
substitution of I" must leave ¢,, ¢,, ¢; all unaltered and hence belong to the
greatest common subgroups G, of H,, H,, H,, Hence exactly four substitu-
tions of G correspond to each substitution of I",so that the order of I is % =6.
The four substitutions of any set form one row of the rectangular array for
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G,, with the substitutions I, (z,2,)(zsz,), (2,25)(2%), (2,2 (2;5) of G, in the
first row. As right-hand multipliers we may take

=1, g=(xz), §=(222s), 9u=(22), gs=(2:2), go=(2s%y).
To the four substitutions of the first row, the four of the second row,...,

correspond ‘
I, (9de), (dsta), (), (uds), (fufo).

79. Of special importance is the case in which H,, H,,...,H,
are identical, so that H s self-conjugate under G. Then J=H,
so that the order k/j of I" equals the index v of H under G. Hence
the number of distinct substitutions of I' equals the number of
letters ¢,,...,¢, upon which its substitutions operate, or the
order and the degree of the group I' are equal. Moreover, I" was
seen to be transitive. Hence I' is a regular group (§ 67).

DeriniTioN* When H is self-conjugate under. G, the group I’
is called the quotient-group of G by H and desxgnated G/H. In
particular, the order of G/H is the quotient of the order of @ by
that of H.

ExampLE 1. By Examples 1 and 2 of § 77, the quotient-group G,/G, is
a regular group on six letters; the quotient-group G,,/G, is the cycle group
{1, (¢12¢3), ($1¢s¢2) }, which is a regular group.

ExampLE 2. We may not employ the symbol G,,/Gj, since G, is not
self-conjugate under G,, (§ 78, Ex. 3).

ExampLE 3. Consider the groups Gy and Gy on three letters. To G,
belongs ¢, =(z, —,)(z, — 2,)(x;—,) ; under G, it takes a second value ¢, = —¢,
(§9). We obtain the following isomorphism between G, and I':

I ’ (-‘51-'52"’3) ’ (x lzsxz) I
(z373), (z,33), (z1z2), ()
Since G, is self-conjugate under G,, we have I'=G,/Gy={I, ({,d)}.

CoroLLARY. If H is a self-conjugate subgroup of G of prime
index v, then I' vs a cyclic group of order v (§ 27).

Illustrations are afforded by the groups G,/G, and G,/G, of Exs. 1 and 2.

REMARK. Any substitution group G is simply isomorphic with
a regular group. In proof, we have merely to take as ¢ any n!-
valued function V,, whence I'" will be of order equal to the order
of G.

* Holder, Math. Ann., vol. 24, page 81,
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80. Let H be a maximal self-conjugate subgroup of G (§ 43).
The quotient-group I'=G/H is then simple (§ 43). For if I" has
a self-conjugate subgroup 4 distinct from both I' and the identity
G,, there would exist, in view of the correspondence between G
and I', a self-conjugate subgroup D of @, such that D contains
H but is distincet from both G and H. This would contradict the
hypothesis that H was maximal.

For example, if H is a self-conjugate subgroup of G of prime index #,
it is necessarily maximal. Then I' is a cyclic group of prime order » (Cor.,
§ 79) and consequently a simple group.

81. The importance of the preceding investigation of the group
T of substitutions on the letters ¢, ¢,, . . ., ¢, lies in the significance
of I" in the study of the resolvent equation

(15) IP=W—d)y—¢) - .. (y—¢.,)=0,

whose coefficients belong to the given domain R. We proceed
to prove the
TrEOREM. For the domain R, the group of the equation (15) is I.
‘We show that I'" has the characteristic properties A and B of
§ 61. Any rational function p(¢y, ¢, ..., ¢s) with coefficients
in R may be expressed as a rational function r(z,, z,, ..., z,)
with coefficients in R:

(18) o1 s o s Guy=7(21, 25, - - ., Zn)-

From this rational relation we obtain a true relation (§ 62) upon
applying any substitution g of the group Gon z,,...,z,. Butg
gives rise to a substitution y of the group I'on ¢,,...,¢,. Hence
the resulting relation is

(19) Or(us Gay o o 0y P) =TTy, 25, . . ., Tn).

To prove A, let p(¢;, . . .,¢,) remain unaltered by all the sub-
stitutions of I, so that p,=p, for any y in I'. Then, by (18) and
(19), rg=r, for any gin G. Hence r lies in the domain R (property
A for the group G). Hence p lies in R.

To prove B, let p lie in the domain R. Then, by (18), r lies
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in B. Hence r,=r, for any g in G (property B for the group G).
Hence, by (18) and (19), o, =p, so that p remains unaltered by all
the substitutions y of I'.

Cor. 1. Since I is transitive (§ 77), equation (15) i is irreducible
in R (§ 68). This was shown otherwise in § 71.

Cor. 2. If the group H to which ¢ belongs is self-conjugate
under G, the group of the resolvent (15) is regular (§ 79). The
resolvent is then said to be a regular equation.

Cor. 3. If H is a self-conjugate subgroup of G of prime index v,
the group of (15) is eyclic (§ 79, Corollary). The resolvent is then
said to be a cyelic equation of prime degree v.

Cor. 4. If H is a maximal self-conjugate subgroup of @, the
group of (15) is simple (§ 80). The resolvent is then said to be
" aregular and simple equation.

82. THEOREM. The solution of any given equation can be reduced
to the solution of a chain of simple regular equations.

Let G'be the group of the given equation for a given domain R,
and let a series of composition (§ 43) of @ be

G, HK,...,M,G,

the factors of composition being A (index of H under @), p (index
of K under H),...,p (index of G, under M). Let ¢, ¢,...,x, V
be rational functions of the roots belonging to H, K, ..., M, G,,
respectively (§ 70). Then ¢ is a root of a resolvent equation
of degree A with coefficients in R, which is a simple regular equation
(§ 81, Cor.4). By the adjunction of ¢ to the domain R, the
group G of the equation is reduced to H (§ 75). Then ¢ is a root
of a simple regular equation of degree pu with coefficients in the
enlarged domain (¢, R). By the adjunction of ¢, the group is
reduced to K. When, in this way, the group has reduced to the
identity @,, the roots z,,...,z, lie in the final domain reached
(compare § 76).

In particular, if the factors of composition A, p,...,p are ali
prime numbers, the resolvent equations are all regular cyclic equations
of prime degrees (§ 81, Cor. 3).
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83. THEOREM. A cyclic equation of prime degree p 1s solvable
by radicals.

Let R be a given domain to which belong the coefficients of the
given equation f(x)=0 with the roots x,z,,...,%p—,, and for
which the group of f(z)=0is the cyclic group G={7,s,¢%,...,s77 1},
where s=(x,2,%;...%p—,). Adjoin to the domain R an imaginary
pth root of unity * w and let the group of f(x)=0 for the enlarged
domain R’ be G’. Consider the rational functions, with coefficients
in R/,

(20) O;=z,+ 'z, + 0¥z, + . .. +PVig,_,

Under the substitution s, 6; is changed into w=—6;. Hence 87 =6;
is unaltered by s and therefore by every substitution of G and of
the subgroup G’ (§ 74). Hence 6, lies in the domain R’ (§ 61).
Extracting the pth root, we have §;=</8;. Since the function (20)
belongs to the identity group, it must be possible, by Lagrange’s
Theorem (§ 72), to express the roots z,,z,,...,Z,_, rationally
in terms of ;. The actual expressions for the roots were found
in the following elegant way by Lagrange. We have, by (20),

To+ 2, 4z, + ... 42, ,=c
Zotwz, +olr, T a3 =\p/§,'
2, twiz, +w'z, +... +w’(ﬂ“)x,_,={’/0_,

o o . . . .

Tg+wP i, + 0¥z, + .. PV, = V6,

where ¢=%/8, is the negative of the coefficient of z¢—! in f(x)=0.
Multiplying these equations by 1, w™, w™%, ..., w~®=1%, respect-
ively, and adding the resulting equations, and then dividing by p,
we get

a:,~=%% c+w""\p/§;+w"‘{/8—,+ ver FO @D Op-x} ’

* As shown in § 89, w can be determined by a finite number of applications
of the operation extraction of a single root of a known quantity.
t{ Since 1+wt+w¥+ ... +w@—0¢=0 for ¢=1,2,...,p-1.
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for :=0, 1,..., p—1. The value of one of these p—1 radieals,

say /8., may be chosen arbitrarily; but the others are then fully
determined, being rationally expressible in terms of that one.
Indeed,

becomes w™0;+(w='0,)* upon applying the substitution s and
hence is unaltered by s, and is therefore in the domain R’.

84, From the results of §§ 82-83, we have the following

THEOREM. If the group of an equation has a series of composition
for which the factors of composition are all prime numbers, the equation
18 solvable by radicals, that 1s, by the extraction of roots of known
quantities.

The group property thus obtained as a sufficient condition for
the algebraic solvability of a given equation will be shown (§ 92)
to be also a necessary condition.



CHAPTER VIIL.
REGULAR CYCLIC EQUATIONS; ABELIAN EQUATIONS.

85. Let f(x)=0 be an equation whose group G for a domain R
consists of the powers of a circular substitution s=(zz,. . .z,):

G={I,s,8% ..., 1},

n being any integer. Since the cyclic group G is transitive and of
order equal to its degree, it is regular (§ 67). Inversely, the gen-
erator s of a transitive cyclic group is necessarily a circular sub-
stitution on the n letters.*

The equation f(z)=0 then has the properties:

(a) It is irreducible, since its group is transitive (§ 68).

(b) All the roots are rational functions, with coefficients in R,
of any one root z,. Indeed, there are only n substitutions in the
transitive group on = letters, and consequently a single substitution
(the identity) leaving z, unaltered. Since z, belongs to the identity
group, the result follows by Lagrange’s Theorem (§ 72). Let
z,=0(z,). To this rational relation we may apply all the substi-
tutions of G (§ 62). Hence

(21) $,=0($1), x,=0(x2), ) xn=.0(xn—1)r z,=0(x,).

DEFINITION. An irreducible equation for a domain R between
whose n roots exist relations of the form (21), 6 being a rational
function with coefficients in R, is called an Abelian equation.}

* A non-circular substitution, as ¢=(z,z,z;)(z,x;), generates an intransi-
tive group. Thus the powers of ¢ replace z, by z,, z;, or z; only.
1 More explicitly, uniserial Abelian (einfache Abel’sche, Kronecker).
A more general type of ‘‘Abelian equations’ was studied by Abel, Buvres,
I, No. XI, pp. 114-140,
3
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86. TuroreM. The group G of an Abelian equation 18 a regular
cyclic group.
Denote any substitution of the group G by

g= T X, Ty ... Tn
Ta Ty Ty ... TS

Applying to the rational relations (21) the substitutions g (§ 62),
2y=0a), 2;=0(zp), ..., za=0(z,).

But, by (21), 6(xs) =2 «4,, holding also for a=n if we agree to set
Ti=Ziyn=%Tiysn= ... It follows that

Tp=ZTat1y Tr=TLgt1y+++y Ta=Ty4y-

Since the equation is irreducible, its roots are all distinct. Hence,
aside from multiples of n,

B=a+1, y=pf+1=a+2, d=r+1=a+3,...

- g= z, X, Ty eee Ty
°t Ta Tayy Tagz oee Tagn-y *

Since g replaces z; by %4, it is the power a—1 of the circular
substitution s=(z,2,z, . ..z,) which replaces z; by z;,,. Hence
G is a subgroup of G'={I, s, s% ..., s""'}. But G is transitive,
since the equation is irreducible. Hence G=G".

5_
Examrre. The equation z*+z3+ 2+ z+1 a';—_: =0 has the roots

Ti=€, Ty=e}, xy=¢) z,=¢,
where ¢ is an imaginary fifth root of unity. Hence
=% ;=17 T,=%, 7=z
Moreover, the equation is irreducible in the domain R of all rational numbers
(§ 88). This may be verified directly by observing that the linear factors
are z— ¢’ and hence irrational, while
i+ + 2+ +1=(2*+ar+r)(2* +br+r?)
gives a+b=1, ab+r+r—'=1, ar-'4+br=1, so that either
a=(1 :l‘.\/5_), b=3(1 :F\/g): r=I,
r
g
Hence the group for R is a cyclic group. Compare Ex. 4, page 58.

SR SRR
or, a b—»r+1, r*+ri+ritr+1=0,
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87. Cyclotomic equation for the pth roots of unity, p being
prime,

(22) - 1429724 . +2+1=0.
Let ¢ be one root of (22), so that é#=1, e%1. Then
(23) e €% ..., o

are all roots of (22) and are all distinct. Hence they furnish
all the roots of (22). As shown in the Theory of Numbers, there
exists,* for every prime number p, an integer g such that gm—1is
divisible by p for m=p—1 but not for a smaller positive integer m.
Such an integer g is called a primitive root of p. It follows that
the series of integers

1, g, ¢%..., 9773,
when divided by p, yield in some order the remainders
1, 2, 3, ..., p—L.
Hence the roots (23) may be written
Ty=¢, T=e9, Ty=e", ..., Tp_=c9" 7,
So T=29, T=20,..., Ty, =25_,, T,=z5_,,
the last relation following from the definition of g, thus:
(9P = etP = tter = ..

Hence the roots have the property indicated by formule (21). In
view of the next section, we may therefore state the

TueoreM. The cyclotomic equation for the tmaginary pth roots
of unity, p being prime, is an Abelian equation with respect to the
domain of all rational numbers.

* For example, if p=>5, we may take g=2, since
21—-1=1, 22—1=3, 2'—1=7, 2¢—1=15,
For p=5 the results of this section were found in the example of § 86.
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88. Irreducibility of the cyclotomic equation (22) in the domain
R of all rational numbers* Suppose that
214234 |, 2+ 1=¢() (),
where ¢ and ¢ are integral functions of degree < p—1 with integral {
coefficients. Taking =1, we get
p=¢(1)-¢(1).
Since p is prime, one of the integral factors, say ¢(1), must be +1.

Since ¢(z)=0 has at least one root in common with (22), whose
roots are (23), at least one of the expressions ¢(¢*) is zero. Hence

(24) P(e)-Pp(e?) - p(e?) . .. Pp(eP™1)=0.
For any positive integer s less than p, the series
(25) e, e, ™, ..., ol

is identical, apart from the order of the terms, with the series (23).
For, every number (25) equals a number (23), and the numbers
(25) are all distinct. In fact, if

_ err=¢*, whence %=1, (03r<p, 03 I<pP)
then (r—t)s, and consequently also r—¢, is divisible by p, so that
r=t. Hence (24) holds true when ¢ is replaced by . Hence

$(z)-$(27) . . . p(z#71)=0
is an equation having all the numbers (23) as roots. Its left mem-
ber is therefore divisible by zr~'+4 ... +2z+1, so that
$@)-$(a?) 1 .. p@~)=Q(2)- (P~ 24 ... +3+1),
where Q(z) is an integral function with integral coefficients. Set-
ting =1, we get
[p(DP=[£1P'=p-Q(1).

Since + 1is not divisible by p, the assumption that zp=1+ ... +2z+1 -
is reducible in R leads to a contradiction.

* The proof is that by Kronecker, Crelle, vol. 29; other proofs have been
given by Gauss, Eisenstein (Crelle, vol. 39, p. 167), Dedekind (Jordan,
Traité des substitutions, Nos. 413—414).

1 If rational, then integral (Weber, Algebra, I, 1895, p. 27).
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89. THEOREM. Any Abelian equation s solvable by radicals.

Let n be the degree of the Abelian equation. By § 86, its
group G is a regular cyclic group {I, s, s?,..., s"~!} of order n.
Set n=p-n’, where p is prime. Set ss=¢’. Then the group

H={I, ¢, ¢, ..., 8" Y
is a subgroup of G of prime index p. It is self-conjugate, since
s—Bg’agP — g—Bgapgh — gap —g'a

by § 13. Hence H may be taken as the second group of a series
of composition of G. Proceeding with H as we did with G, we
finally reach the conclusion: :

The factors of composition of a cyclic group of order n are the
prime factors of n each repeated as often as i occurs in n.

In view of the remark at the end of § 82, it now follows that
any Abelian equation of degree n can be reduced to a chain of Abelian
equations whose degrees are the prime factors of n.

We may now show by induction that every Abelian equation
of prime degree p is solvable by radicals. We suppose solvable
all Abelian equations of prime degrees less than a certain prime p.
Among them are the Abelian equations of prime degrees to which
can be reduced the Abelian equation of degree p—1, giving an
imaginary pth root of unity (§ 87). The latter being therefore
known, every Abelian equation of degree p is solvable by radicals
(§ 83). Now an Abelian equation of degree 2 is solvable by radicals.
Hence the induction is complete.

It follows now that an Abelian equation of any degree is solvable.

CoroLLARY. If p is a prime number, all the pth roots of unity
can be found by a finite number of applications of the operation
extraction of a single root of a known gquantity, the index of each
radical being a prime divisor of p—1.

90. Lemma. If p be prime, and if A be a quantity lying in a
domain R but not the pth power of a quantity in R, then zP—A 13
trreducible in R.

For, if reducible in R, so that

P—A=¢,(2) () ...,
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the several factors are of the same degree only when each is of
degree 1, the only divisor of p. In the latter case, the roots would
all lie in R, contrary to assumption. Let then ¢, be of higher de-
gree than ¢, and set

4@ =G—2)...@~,), @=—2)...(~2k),

so that n,—n,>0. The last coefficients in the products are
12z, .. Ty =t0"mm, ta)z). .. 2] = e,

respectively, since the roots of 22— A =0 are

(26) z,, wr, oz, ..., Pz,

o being an imaginary pth root of unity. But the last coefficients,
and their quotient +w°z,™, where m=n,—n,>0,liein R. Since
p and m are relatively prime, integers ¢ and v exist for which

mpu—pyv=1.
s (e =0t P =0k AV = AvT,

where 2’ is one of the roots (26). Hence A,2z’, and consequently
#/, liesin R. Then A equals the pth power of a quantity 2’ in R,
contrary to assumption. Hence 22— A must be irreducible.
91. THEOREM. A binomial equation of prime degree p,
zp—A =0,
can be solved by means of a chain of Abelian equations of prime degfee.
Let R be the given domain to which A belongs. Adjoin w

and denote by R’ the enlarged domain. Then the roots (26)
satisfy the relations

=W, T3=Wl; ..., Tp=Wlp_y I=W0ITp,

of the type (21) of § 85, 6(x) being here the rational function wz.
The discussion in § 90 shows that z»— A is either irreducible in the
enlarged domain R’ or else has all its roots in R’. In the former
case, the group of 27— A =0 for R’ is a regular cyclic group (§ 86);
in the latter case, the group for R’ is the identity. But w itself is
determined by an Abelian equation (§ 87). Hence, in either case,
z¢— A =0 is made to depend upon a chain of Abelian equations,
whose degrees may be supposed to be prime (§ 89).



CHAPTER IX.
CRITERION FOR ALGEBRAIC SOLVABILITY.

92. We are now in a position to complete the theory of the
algebraic solution of an arbitrarily given equation of degree n,

(¢)) f(z)=0.

A group property expressing a sufficient condition for the algebraic
solvability of (1) was established in §84. To show that this
property expresses a necessary condition, we begin with a dis-
cussion of equation (1) under the hypothesis that it is solvable
by radicals, namely (§ 50), that its roots z,, . . ., z, can be derived
from the initially given quantities R/, R”,... by addition, sub-
traction, multiplication, division, and extraction of a root of any
index. These indices may evidently be assumed to be prime
numbers. If & 7,..., ¢ denote all the radicals which enter the
expressions for all the roots z,, z,,..., z,, the solution may be
exhibited by a chain of binomial equations of prime degree;

A =L(R',R”,...), p*=M(&,R,R",...), ...,
ge=P(..., 7, & R, R",..)),
z;=R($,...,n, &, RLR",..) (i=1,...,n),

L,M,..., P, R;being rational functions with integral coeflicients,
in which some of the arguments £, 7, ... written may be wanting.
By §91, each of these binomial equations, and therefore also the
complete chain, can be replaced by a chain of Abelian equations
of prime degrees; '

79
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"d(y; R, R”,...)=0, Abelian for domain R;
Y(z; y,R,R",...)=0, Abelian for (y, R);
6(w;...,2,y,R,R"”,...)=0, Abelianfor(...,zy,R);
z;=04w,...,2,y,R,R",...) (t=1,...,n).

We begin by solving the first Abelian equation @(y)=0 and
adjoining one of its roots, say y, to the original domain R; the
group G of (1) then reduces to a certain subgroup, say H,
including the possibility H=@G (§ 74). Then we solve the second
Abelian equation ¥(z)=0 and adjoin one of its roots, say z, to the
enlarged domain (y, R); the group H reduces to a certain sub-
group, say J, including the possibility J=H. Proceeding in this
way, until the last equation 8(w)=0 has been solved and one of
its roots, say w, has been adjoined, we finally reach the domain
(w,..., 2, y, R), with respect to which the group of (1) is the
identity G,, since all the roots z; lie in that domain.

By every one of these successive adjunctions, either the group
of equation (1) is not reduced at all or else the group is reduced
to a self-conjugate subgroup of prime index. This theorem, due to
Galois, is established as a corollary in the next section; its impor-
tance is better appreciated if we remark that each adjoined
quantity is not supposed to be a rational function of the roots, in
contrast with § 75, so that we shall be able to draw an important
conclusion, due to Abel, concerning the nature of the irrationalities
occurring in the expressions for the roots of a solvable equation
(§ 99).

From this theorem of Galois, it follows that the different groups
through which we pass in the process of successive adjunction
of a root of each Abelian equation in the chain to which the given
solvable equation was reduced must form a series of composition
of the group G of the given equation having only prime numbers
as factors of composition. Indeed, the series of groups beginning
with @ and ending with the identity G, are such that each is a self-
conjugate subgroup of prime index under the preceding. Hence
the sufficient condition (§ 84) for the algebraic solvability of a
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given equation is also a necessary condition, so that we obtain
Galois’ criterion for algebraic solvability:

In order that an equation be solvable by radicals, it i3 mecessary
and sufficient that s group have a series of composition in which
the factors of composition are all prime numbers.

98. Theorem of Jordan,* as amplified and proved hy Hélder: ¢

For a given domain R let the group G, of an equation F,(x)=0
be reduced to Gy’ by the adjunction of all the roots of a second equation
F,(2)=0, and let the group G, of the second equation be reduced to
G, by the adjunction of all the roots of the first equation F,(z)=0.
Then G/ and G, are self-conjugate subgroups of G, and G, re-
spectively, and the quotient-groups G,/Gy and G,/G, are simply
1somorphic.

Let ¢,(&;, &35 -+ - £n) be a rational function, with coefficients
in R, of the roots of the first equation which belongs to the sub-
group G, of the group G, of the first equation (§ 70). By hypothe-
sis, the adjunction of the roots 7, 7,,...,7m of the equation
F,(x) =0 reduces the group G, to G;’. Hence ¢, lies in the enlarged
domain, so that

(27) X TR TR en)=¢1(7lu Nayeeeylm)y

the coefficients of the rational function ¢, being in R.

Let ¢y, ¢a, ..., ¢r denote all the numerically distinet values
which ¢, can take under the substitutions (on §,,..., &) of G,.
Then G, is of index &k under G, (§ 71). Let ¢,, @,, ..., ¢; denote
all the numerically distinct values which ¢, can take under the
substitutions (on 7,,...,7s) of G,. The k quantities ¢ .are the
roots of an irreducible equation in R (§ 71); likewise for the
quantities ¢. Since these two irreducible equations have a com-
mon root ¢, = ¢, they are identical (§ 55, Cor.II). Hence ¢, ..., ¢
coincide in some order with ¢,, ..., ¢;; in particular, k=1I.

If s8; is a substitution of G; which replaces ¢, by its conjugate ¢;,
then s, transforms G/, the group of ¢, by definition, into the group
of ¢; of the same order as G,". But ¢;, being equal to a ¢, lies in

* T'raité des substitutions, pp. 269, 270. { Math. Annalen, vol. 34,
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the domain R’=(R; 7, ..., )m), and hence is unaltered by the
substitutions of the group G,/ of the equation F,(z)=0 for that
domain R’ (§ 61, property B). Hence the group of ¢; contains
all the substitutions of G,’; being of the same order, the group
of ¢; is identical with G,’. Hence G\’ is self-conjugate under G,.
The group of the irreducible equation satisfied by ¢, is therefore
the quotient-group G,/G, (§79).

Let H, be the subgroup of G, to which belongs ¢,(9,, 9., - - - , 91)-
Since ¢, is a root of an irreducible equation in R of degree I=Fk,
the group H, is of index k under G, (§ 71). By the adjunction of
¢, (or, what amounts to the same thing in view of (27), by the
adjunction of ¢,), the group G, of equation F,(z) =0 for R is reduced
to H, (§ 75). If not merely ¢,(§,, ..., &), but all the &’s them-
selves be adjoined, the group G, reduces perhaps further to a
subgroup of H,. Hence G, is contained in H,. We thus have
the preliminary result: If the group of F,(z)=0 reduces to a
subgroup of index k on adjoining all the roots of F,(z)=0, then
the group of F,(z)=0 reduces to a subgroup of index k,, k, Sk,
on adjoining all the roots of F,(z)=0.

Interchanging F, and F, in the preceding statement we obtain
the result: If the group of F,(x)=0 reduces to a subgroup of
index %, on adjoining all the roots of F,(z)=0, then the group of
F,(=)=0 reduces to a subgroup of index k,, k,5k,, on adjoining
all the roots of F,(x)=0. Since the hypothesis for the second
statement is identical with the conclusion for the first statement,
it follows that

k2=kl kn§k1 kzgku

so that k,=k. Hence the group G, of the theorem is identical
with the group H, of all the substitutions in G, which leave ¢,
unaltered. It follows that G, is self-conjugate under G, (for the
same reason that G,’ is self-conjugate under @,). The irreducible
equation in R satisfied by ¢, has for its group the quotient-group
G,/G, . _
But the two irreducible equations for R satisfied by ¢, and ¢,,
respectively, were shown to be identical. Hence the groups
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roots are rationally expressible in terms of the roots of the given equation
and of certain roots of unity.

The roots of an algebraically solvable equation can therefore
be given a form such that all the radicals entering them are
rationally expressible in terms of the roots of the equation and of
certain roots of unity. This result was first shown empirically by
Lagrange for the general quadratic, cubic, and quartic equations
(see Chapter I).

The Theorem of Abel supplies the step needed to complete the
proof of the impossibility of the algebraic solution of the general
equation of degree n>4 (§ 48).

95. By way of illustrating Galois’ theory, we proceed to give
algebraic solutions of the general equations of the third and fourth
degrees by chains of Abelian equations.

For the cubic z*—cz?+c,z—c;=0, let the domain of rationality
be R=(c,, ¢, ¢;). The group of the cubic for R is the symmetric
group G, (§ 64). To the subgroup G, belongs

4= (2,— 2,) (%, — 25) (23— 7,).
In view of Ex. 3, page 4, 4 is a root of the equation
(28) A2=c,%c,% + 18¢,¢,c,—4c,° — 4c,%cy — 2742,

Its second root —4 is rationally expressible in terms of the first
root 4, and (28) is irreducible since 4 is not in R for general ¢,, ¢,, ¢,.
Hence (28) is Abelian (§ 85). By adjoining 4 to R, the group
reduces to Gy (§ 75). Solve the Abelian equation w?+w+1=0
(§ 87) and adjoin w to the domain (4, R). To the enlarged domain
R'=(w, 4, ¢, 6, c;) belong the coefficients of the function

=2, + wz, + wzs.
By § 34, ¢,® has a value lying in R’, namely,
¢.2=13{2¢,*— 9c,0,+ 27¢c;— 3(w—w?) 4],

This binomial is an Abelian equation for the domain R’ (§ 91).
By the adjunction of ¢,, the group of the cubic reduces to the
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identity. Hence z,, z,, 7, lie in the domain (¢,, w, 4, ¢, ¢, ¢).

Thus, by § 34,
A )

We may, however, solve the cubic without adjoining w. In
the domain (4, ¢, ¢, ¢;), the cubic itself is an Abelian equation,
since its group @ is cyclic (§ 85). By the adjunction of a root z,
of this Abelian equation, the group reduces to the identity, so that
z, and z, must lie in the domain (z,, 4, ¢, ¢, ¢;). The explicit
expressions for z, and z; are given by Serret, Algébre supérieure,
vol. 2, No. 511:

%‘2‘3‘ {€6c,—2c,")z,* + (9c3— 7o+ 2, — A); +4c,’ — ¢ %c,— Beycy+ ¢, 4},

the value of z; being obtained by changing the sign of 4 throughout.
96. For the general quartic z*4ax®+bx?+cx+d=0, the group
for the domain R=(a, b, ¢, d) is G,,. To the subgroup G,, belongs
4= (2,— 2,)(2, — 25) (2, — ) (2, — ,) (T, — 7,) (T3 — T,)..
Since 42 is an integral function of q, b, ¢, d with rational coefficients
(§ 42), we obtain 4 by solving an equation which is Abelian for R.
After the adjunction of 4, the group is Gy,. To the subgroup G,
¢f G,; belongs the function y,=zx,+z,z, It satisfies the cubic
resolvent equation (§ 4)

(16) y*—by*+ (ac—4d)y —a?d+4bd—c*=0.

The group of this resolvent for the domain (4, a, b, ¢, d) is a cyclic
group of order 3 (§ 79, Cor.), so that the resolvent is Abelian. By
the adjunction of y,, the group of the quartic reduces to G,. To
the subgroup G, of G, belongs the function t=2z,+z,—z,—z,. It
is determined by the Abelian equation (§ 5)

(29) *=a’—4b+4y,.

By the adjunction of ¢, the group reduces to G,. To the identity
subgroup G, of G, belongs z,; it is a root of (17), § 4:

, 2+ §(a—t)z+ 3y, — (ay,—c)/t=0.
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After the adjunction of a root z, of this Abelian equation, the -
group is the identityG,. Hence (§ 72) all the roots lie in the domain
(z,t,y,,4,a,b,¢c,d). Thisisevident for z,, since z, +z,= —3(a—1).
For z, and z,, we have

T3+ 2 =2, +2,—t, Zy—2,=(Y—Yy) +(7,—7,),

while y, and y, are rationally expressible in terms of y,, 4, and
the coefficients of (16), as shown at the end of § 95. In fact,
(%1—¥2) (4.~ ¥s)(y1—Y,) has the value 4 by § 7.

97. Another method of solving the general quartic was given
in § 42. For the domain R=(w, a, b, ¢, d), where w is an imaginary
cube root of unity, the group is G,, (§ 64). After the adjunction
of 4, the group is Gy,. To the self-conjugate subgroup G, belongs
¢ =y, +wy,+w?;, where y,=z,x,+ x5z, ete., so that ¢, is a rational
function of z,, x,, z;, z,, with coefficients in B. By § 42,

¢2=3(w—w?4-216J,

so that ¢, 1s determined by an equation which is Abelian for the
domain (4, w, a, b, ¢, d). Then, by § 42, y,, ¥,, ys belong to the
enlarged domain (¢,, 4, o, a, b, ¢, d).

By the adjunction of ¢, a root of the binomial Abelian equa-
tion (29), the group reduces to G,. By the adjunction* of both
i=V—1 and V=z,—z,+12,—1%,, which is a root of a binomial
quadratic equation (§ 42), the group reduces to the identity G,.
The expressions for z,, z,, z,, z, in terms of ¢, V, 7, and a, are
given by formula (41), in connection with (40), of § 37.

* Without adjoining ¢ and V, we may determine ¢, =z, +z;—z,—z, from
t?=a*—4b+4y,. Then t;=z,+z,—,—x; is known, since ¢t,t;=4ab—8¢c—a®
by formula (39) of § 36, where ¢,=¢. Then

z=(—at+th+h+t), Z=i—at+l—4—1),eto.



CHAPTER X.

METACYCLIC EQUATIONS; GALOISIAN EQUATIONS.
98. Analytic representation of substitutions. Given any sub-
stitution

g (%0 T1 Ta ¢ os Tn
Tg Lo Te ooo T, ]!

so that a,b, ..., k form a permutation of 0,1, ..., n—1,it is pos-
sible to construct a function ¢(2) of one variable z such that

¢(0)=a’ ¢(1)=br #(2)=¢c, ..., $(n—1)=k.

Indeed, such a function is given by Lagrange’s Interpolation-
Formula,
_ aF(z) bF(z) kF(2)
Q= oyt e=nrm T Y et D=’

where F(2)=2(z—1)(z—2)...(z—n+1) and F’(z) is the deriva-
tive of F(z). Then the substitution s is represented analytically

( y )
z«‘)

‘We confine our attention to the case in which n is & prime num-
ber p, and agree to take £,=%,4p==2;4,p= .... Then (asin § 86)
the circular substitution ¢t=(z,z,,...2p-,) may be represented

in the form
( y )
x..'.!

Let G be the largest group of substitutions on z,, z,, ..., 2y,
8
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under which the cyclic group H={I,¢,,...,1*~%} is self-conjugate.
The general substitutions g of G and h of H may be written

e 8 ) _[= _
§= (-’%))’ h= (x:w) =t

By hypothesis, g~%g belongs to H and hence is of the form ¢

—1_ (T2 —1; — (Ze) -1 [Td(2)
7= (), o= (), o= (30)-

But #* replaces ;) by Zgi)+a. Hence must
To(z+1) = T(z)+a-

Taking in turn 2=0, 1, 2, . . ., and writing ¢(0)=b, we get

T =Tb+ar To@) = TH)+a= Tb+2ar Tp(s) = T(2)4+a=Tb+aay oo

By simple induction, we get Zg.)=2Zs4z for any integer z. Hence

= [Tz
(30) o= (%)
Here a and b=¢(0) are integers. Also a is not divisible by p, since
g~ g is not the identity. The distinct substitutions * g are obtained
by taking the values

a=1,2,...,p-1; b=0,1,2,...,p—-1.

The resulting p(p—1) substitutions form a group called the meta-
cyclic group of degree p. This follows from its origin or from

() (o) = Crvrne) = G
Zaz+b) \Taz+8 Taaz+b)+8/ \Toar+ab+p) /"

ReMARK. The only circular substitutions of period p in the
metacyclic group are the powers of ¢&. For a=1, (30) becomes #;
for a1, (30) leaves one root unaltered, namely, that one whose
index z makes az+b and z differ by a multiple of p.

* Formula (30) does, indeed, define a substitution on zy, 2y, ..., Za—y,

(x., , Ly oo )

Lo Tayd Tgaqd eoo /?

since b, a+b, 2a+b,..., (p—1)a+b give the remainders 0, 1, 2, .., p—1,
in some order, when divided by p. In proof, the remainders are all different.
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99. A metacyclic equation of degree p is one whose group @
for a domain R is the metacyclic group of degree p. It is irre-
ducible since @ is transitive, its cyclic subgroup H being transitive.
Again, all its roots are rational functions of two of the roots with
coefficients in R. For, by the adjunction of two roots, say z.
and z,, the group reduces to the identity. Indeed, if g leaves
zy and z, unaltered, then

(au+b)—u, (av+b)—v

are multiples of p, so that their difference (a—1)(u—v) is a multi-
ple of p, whence a=1, and therefore b=0. Hence the identity
alone leaves z. and z, unaltered. ’

DeriNITION. For a domain R, an irreducible equation of prime
degree whose roots are all rational functions of two of the roots is
called a Galoisian equation.

Hence a metacyclic equation is a Galoisian equation.

100. Given, inversely, a Galoisian equation of prime degree p,
we can readily determine its group G for a domain R. The equa-
tion being irreducible, its group is transitive, so that the order
of @ is divisible by p (§ 67). Hence G contains a cyclic subgroup
H of order p (see foot-note to § 27). Let z, and z, denote the two
roots in terms of which all the roots are supposed to be rationally
expressible. Among the powers of any circular substitution of
period p, there is one which replaces z, by z,. Hence, by a suitable
choice of notation for the remaining roots, we may assume that
H contains the substitution

t=(T, 2, 2, . ZTp—y)-
To show that H is self-conjugate under @, it suffices to prove
that any circular substitution, contained in G, '

r=(x,-o x,~1 :C,'z o x,-p_l)

is a power of ¢; for, the transform of 7 by any substitution of G wil!
then belong to H (§ 40). Since cvery two adjacent letters in »
are different, ¢,;,—%, is never a multinle of p and hence, for at
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least two values ¢ and v of z chosen from the series 0, 1,..., p—1,
gives the same remainder when divided by p. Hence

i ppr—in=Tiy 4y —iyr SBY =Tk

Since r is a power of a circular substitution replacing z, by z,, we
may assume that 7,=0, 1,=1. The hypothesis then gives

Tig=0d(z;, ;) (a=0, 1,..., p—-1),

where 0, is a rational function with coefficients in R. Applying

to these rational relations the substitutions 7t *# and r*t~*» of the
group G, we obtain, by § 62,

Ti gy umin=0a(To ), Ti,,,—i,=0uz, Zk).
Hence the subscripts in the left members are equal, so that
i¢+p—'7:a+v=1:y_iv=c (a=0) 1)"'} p_l))

omitting multiples of p. Hence every subseript in r exceeds by ¢
the (u— v)th subseript preceding it. Hence r is a power of ¢.
- Since G has a self-conjugate cyclic subgroup H, it is contained

in the metacyclic group of degree p (§ 98).

The group of a Galoisian equation of prime degree p is a subgroup
of the metacyclic group of degree p.

101. A metacyclic equation is readily solved by means of a
chain of two Abelian equations. Let ¢=R(x,, z,, ..., Zp_,) belong
to the subgroup H of G. Then

¢1=¢; ¢2=R(x07 L3y Tgy oeey zzp—z); ey ¢P—l= R(zo: Tp—qs Top—25 oees x(P—l)’)

are the p—1 values of ¢ under G. But ¢, is changed into ¢4; by
the substitution which replaces z, by z3,. It follows that the
p—1 values of ¢ are permuted cyclically under the p(p—1) sub-
stitutions of G. The group of the resolvent equation

(w=¢D(w—¢,) ... (W—¢p_,)=0

is therefore a cyclic group of order p—1, so that the resolvent
is an Abelian equation (§ 85). By the adjunction of ¢, the group
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of the original equation reduces to the cyclic group H, so that it
is Abelian in the enlarged domain.

The method applies also to any Galoisian equation. Its group
G is a subgroup of the metacyclic group and yet contains H as a
- subgroup. The order of G is therefore pd, where d is a divisor
of p—1. The two auxiliary Abelian equations are then of degrees
d and p respectively. Applying § 89, we have the results:

A Galoisian equation can be solved by a chain of Abelian equations
of prime degree and hence 1s solvable by radicals.

ExampLE 1. Let A be a quantity lying in a given domain R but not
the pth power of a quantity in B. Then the equation

zP—A =0
is irreducible in R (§ 90). Its roots are
Ty, Ty=WTy, Ty=w%, ...., Tp—y=wPlz,

All the roots are rationally expressible in terms of z, and z,:

- (’ﬁ) Zy G=0,1,...,p—1)
To

The equation is therefore a Galoisian equation. For the function ¢ belonging -
to the cyclic subgroup H we may take

Ty T, o

—=—=,,, ==

Ty Z Zp—,
The resolvent equation wP—'+ ... +w+1=0 is indeed Abelian (§ 87).
After the adjunction of w, zP—A =0 becomes an Abelian equation (§ 91).

ExamrLE 2. To solve the quintic equation *

(e) ¥*+py*+ip'y +r=0,
set y=2— 5—’;— Then (compare the solution of the cubic, § 2) .

S
z'—b%-,+r-=0.

== +4/Q, Q=§+ (3”) "

If ¢ is an imaginary fifth root of unity, the roots of (¢) are
h1=A+B, y,=eA+e'B, y,=¢¢A+e'B, y,=’A+¢'B, y;=¢'A+¢B,

where
A={J-g+\/a, B=:’—§—\/‘Q.

* Compare Dickson’s College Algebra, pages 189 and 193.
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Evidently A and B may be expressed as linear functions of y, and y,. Hence
Ys, Y4, Ys are rational functions of y, and y, with coefficients in the domain
R=(e¢, p, ). For general p and r, equation (e) is irreducible in R, since no
one of its roots lies in R and since it has no quadratic factor in R (as may be
shown from the form of the roots). Hence (e) is a Galoisian equation.

102. LemMA. If L s a self-conjugate subgroup of K of prime
indezx v and if k 13 any substitution of K not contained in L, then k*,
and no lower power of k, belongs to L, and the period of k i3 divisible
by v.

By the Corollary of § 79, the quotient-group K/L is a cychc
group

Lnr ... Tv_l}'

Hence to k corresponds a power of 7, say r*, where « is not divisible
by v. Then to k¥ corresponds (y<)*=1I, so that k” belongs to L.
If 0<m< v, k™ does not belong to L, since (y*)™=1I requires that
xm be divisible by the prime number v.

Let the period g of k be written in the form

p=qv+r 03 T<).
Since k”*=h, a substitution of L, we get I=k*=h%". Hence
k"=h"9, so that =0, in view of the earlier result concerning
powers of k. Hence g is divisible by v.
103. TueoreM (Galois). Every irreducible equation of prime degree
p which is solvable by radicals is a Galoisian equation.
Let @ be the group of the equation for a domain R and let

(31) &H,..., K L,... G,

be a series of composition of G. Since the equation is solvable by
radicals, the factors of composition are all prime numbers (§ 92).
Since the equation is irreducible in R, @ is transitive (§ 68), so that
its order is divisible by p (§ 67). Hence (foot-note to § 27), G
contains a circular substitution of period p, say t=(z, 2, . . . Zp_,).
Let K denote the last group in the series (31) which contains &.
Then the group L, immediately following K, and of prime index v
under K, does not contain ¢. Since =1 belongs to L, while no
lower power of ¢ belongs to L, it follows from § 102 that v=p.
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To show that L is the identity G,, suppose that L contains a
substitution s replacing z. by a different letter x5. Then u=st*~#
leaves z, unaltered and belongs to K. Since a—f is not divisible
by p and since ¢ does not belong to L, it follows that u does not
belong to L. By the Lemma of § 102, the period of u is divisible
by v=p. This is impossible since « is a substitution on p letters,
one of which remains unaltered.

Since L=@, and the index of L under K is p, the group K is
the eyclic group of order p formed by the powers of {. Since the
group J immediately preceding K in the series (31) contains the
cyclic group K as a self-conjugate subgroup, J is contained in
the metacyclic group of degree p (§ 98). By the remark at the
end of § 98, J contains no circular substitutions of period p other
than the powers of ¢, If J’ be the group immediately preceding
J in the series (31), so that J is self-conjugate under J’, the trans-
form of ¢ by any substitution of J’ belongs to J and is a circular
substitution of period p, and therefore is a power of £. Hence the
cyclic group K is self-conjugate under J’, as well as under J.
Hence J” is contained in the metacyclic group (§ 98). Proceeding
i1 this way until we reach the group @, we find that @ is contained
11 the metacyclic group. The theorem therefore follows from § 101.



CHAPTER XI.
AN ACCOUNT OF MORE TECHNICAL RESULTS.

104. Second definition of the group I of § 77. To show that
I is completely defined by the given groups G and H and is entirely
independent of the function ¢ used in defining it, we define a group
I', independently of functions belonging to H and prove that
Ir,=r.

Consider a rectangular array of the substitutions of G with
those of the subgroup H in the first row:

rnlg=I h, ...h,
(32) T2{ 92 h.g, . htgz

19y h,g,,

where r; denotes the jth row of the array. Let g be any substitu-
tion of G. Since g,g, ..., ¢.9 lie in the array (32), we may write

(33) 99=hagas, gg=hpgs ..., 99=hege.

Hence the products of the substitutions in the array (32) by ¢
on the right-hand may be written (retaining the same order):

a|haga (Bho)ga ... (Rha)ga
(34) Tp hﬂ'gﬂ (’77}"5’)919 oo (hthﬁ')gﬁ

T h fg. (h»h")gx -. (.th;').t;-

Now hdy hhd,y ..., kihs form a permutation of hy=1I, h,, ...,k

Hence the substitutions in the first row of (34) are identical, apart

from theirk order, with those of the ath row of (32). Similarly
- - o
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for the other rows. Hence the multiplication of (32) on the right
by g gives rise to the following permutation of the rows:

Ty Tgeeey
r= <rl,rtg e -r,‘>'
To identify the group I'; of these substitutions y with the group

I’ given by the earlier definition, we note that to g corresponds,
under the earlier definition,

A el R

since, by (33), ¢g,0=0h yo,=0s . etc. But this substitution differs
from 7 only in notation. Hence I',=1TI".

ExampLE 1. Let G be the cyclic group {I, ¢, ¢?, ¢, ¢, c*}, where ¢*=1I,
and let H be the subgroup {I, ¢*}. The array is
I ¢

c ct
c? ¢t

LY
T3
Ts

To ¢ corresponds (ryr,r5). Hence I'={I, (ryryry), (ryrara) }.

ExampLE 2. Let G be the alternating group G and let H be the com-
mutative subgroup G, (§ 21, Ex. f). The rectangular array for @ is given
in § 77, Ex. 2. Multiplying its substitutions on the right by (z,2,)(s%),
we obtain the array

(223) (570, I, (12 (232y), (EXATEXA)
(zzy2)), (zzzs), (21257,), (CX XN
(z7:75), (2,757, (z7s), (z:747,)

Hence each row as a whole remains unaltered, so that to (2,2,)(z;z) corre-
sponds the identity. A like result follows for (z,r,)(x,2,) and for the product
(z,z)(z,xs) of the two. But (x,z:r,) applied as a right-hand multiplier
gives rise to the permutation (r,r,rs) of the rows, as follows immediately from
the formation of the rectangular array by means of the right-hand multipliers
(z,z3x,) and (z,75x). Hence I'={I, (ryryry), (rirsra)}.

105. Constancy of the factors of composition. By the criterion
of §92, an equation is solvable by radicals if, and only if, the

group G of the equation has a series of composition in which the
factors of composition are all prime numbers. In applying the
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criterion, it might be necessary to investigate all the series of com-
positions of G to decide whether or not there is one series with
the factors of composition all prime. The practical value of the
criterion is greatly enhanced by the theorem of C. Jordan:*

If a group has two different series of composition, the factors of
composition for one series are the same, apart from their order, as
the factors of composition for the other series.

ExampLE 1. Let Gy, G, H,be defined asin § 21; G,, G;, Gy as in Example
3 of § 65; and let
Ci={1, (z22,2), (2%)(x52), (TxZTy)}, Ha={I, (z,75)}, Hy={I, (z4z)}.
Then Gj has the following series of compositions:

Gy, G, Gy, Gy; Gy, G, G3, Gy; Gy, G, G, Gy;
Gy, C,, Gy, Gy; Gy H, Gy, Gy; Gy Hy, H,, Gy Gy, H,, H;, Gy
In each case the factors of composition are 2, 2, 2,

ExamrrLe 2. Let Cy; be the cyclic group formed by the powers of the

circular substitution @ =(z,7,2; . . . 7;;). Its subgroups are
CG={I: a’r at, a.: a": aw}’ C‘={I, a') a‘) a.}l
Cs={I, a*, a‘}r C={], a.}) Cl"{l;'

The only series of composition of Cy, are the following: t
Cuy Cy, Cy, Cy; Cy,Co, Gy, Cy; Cy, Cy, Gy, Cye
The factors of composition are respectively 2, 2, 3; 2, 3, 2; 3, 2, 2.

106. Constancy of the factor-groups. In a series of composi-
tion of G,
G, aq,..., G,

each group is a maximal self-conjugate subgroup of the preceding
group (§ 43). The succession of quotient-groups

/G, G'/G", G"[@", ...

forms a series of factor-groups of G. Each factor-group is simple
(§80). The theorem of Jordan on the constancy of the numerical

* Traité des substitutions, pp. 42-48. For a shorter proof, see Netto-Cole,
Theory of Substitutions, pp. 97-100.
1 Every subgroup is self-conjugate since a—‘afaf=a/ (§13).
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factors of composition is included in the following theorem of
Holder:*

For two series of composition of a group, the factor-groups of one
series are tdentical, apart from their order, with the factor-groups of
the other serves.

Thus, in Example 1 of § 105, the factor-groups are all cyclic groups of
order 2. In Example 2, the factor-groups for the respective series are

K, K, K;; Ky, Ky, K;; Ky, K, K,

where K, and K, are cyclic groups of orders 2 and 3 respectively. That
C,/C, is the cyclic group K, follows from § 104, Ex. 1, by setting a?=c.
That C,;/C, is K; follows readily from § 104,

107. Holder’s investigation t on the reduction of an arbitrary
equation to a chain of auxiliary equations is one of the most im-
portant of the recent contributions to Galois’ theory. The earlier
restriction to algebraically solvable equations is now removed.
As shown in § 82, the solution of a given equation can be reduced
to the solution of a chain of simple regular equations by employing
rational functions of the roots of the given equation. The groups
of the auxiliary equations are the simple factor-groups G of the
given equation. Can any one of these simple groups be avoided
by employing accessory <rrationalities, namely, quantities not
rational functions of the roots of the given equation? That this
question is to be answered in the negative is shown by Holder’s
result that the factor-groups of G must occur among the groups
of the auxiliary simple equations however the latter be chosen.
Any auxiliary compound may first be replaced by a chain of
equivalent simple equations. The number of factor-groups of G
therefore gives the minimum number of necessary auxiliary simple
equations. If this minimum number is not exceeded, then Holder’s
theorem states that all the roots of all the auxiliary equations are

* Holder, Math. Ann., vol. 34, p. 37; Burnside, The Theory of Groups,
p- 118; Pierpont, Galois’ Theory of Algebraic Equations, Annals of Math.,
1900, p. 51.

1 Mathematische Annalen, vol. 34, p. 26; Pierpont, l. c., p. 52.
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rational functions of the roots of the given equation and the quan-
tities in the given domain of rationality.

Holder’s proof of these results, depending of course upon the
constancy of the factor-groups of G, is based upon the fundamental
theorem of § 93.

The special importance thus attached to simple groups has
led to numerous investigations of them. Several infinite systems
of simple groups have been found and a table of the known simple
groups oi composite orders less than one million has been prepared.*

For full references and for further developments of Galois’
theory, the reader may consult Encyklopadie der Mathematischen
Wissenschaften, 1, pp. 480-520.

* Dickson, Linear Groups, pp. 307-310, Leipzig, 1901. -



APPENDIX.

RELATIONS BETWEEN THE ROOTS AND COEFFICIENTS OF AN
EQUATION.

Let z,, z,, ..., &, denote the roots of an equation f(z)=0 in
which the coefficient of z» has been made unity by division. Then
f@)=(z—z)(@—2,) ... (2—2n),
as shown in elementary algebra by means of the factor theorem.

Writing f(z) in full, and expanding the second member, we get

m—can i~ ..+ (—Drep=2r— (2, + 2o+ . . . F2z)2n?
+ (2,85 + 2, Ty + ToTg+ o oo FTn_Tp)T 2
— . H(—-Drzz, ...z,

Equating coefficients of like powers of z, we get

@) AT+ ..o FTa=cyy T+ oo FTaTn=0Cpy..ny Ty.. . Tn=Cp.

These combinations of z,,...,z, are called the elementary sym-

metric functions of the roots. Compare Exs. 5 and 6 of page 4.
FUNDAMENTAL THEOREM ON SYMMETRIC FUNCTIONS.*

Any integral symmetric function of z,,%,, . . . , T, can be expressed
in one and only one way as an integral function of the elementary
symmetric functions ¢,, ¢, . . . , Cn. o

A term x,™r,mix;ms ... is called higher than zmaz,mzms. ..
if the first one of the differences m, —n,, m,—n,, my—n,, . . ., which

* The proof is that by Gauss, Gesammelte Werke, I11, pp. 37, 38.
9
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does not vanish, is positive. Then ¢,, ¢, ¢, ..., ¢; have for their
highest terms z,, zx,, 2,25 ..., Z,%,...x; respectively. In
general, the function c,%c,fcy . .. has for its highest term

:c,“*’p'*'"""" 32P+7+... zaH"" ..

Hence it has the same highest term as ¢,*¢,f'cy”’. . . if, and only if,
a+ﬂ+r+ cee =a'+ﬂ,+r’+ ceey ﬂ+r+ cee =,3'+T,+ cesy
r+...=Y+...,
whicn require that a=d/, f=§, r=7v,...
Let S be a given symmetric function. ILet its highest term be
h=azozfzyzl...zw ...(aSASySo...Su). '

We build the symmetric function

s=actPcf ey, .. ey

In its expansion in terms of z,,..., z, by means of formule (3),
its terms are all of the same degree and the highest term is evi-
dently h. The difference

S,=8—¢
is a symmetric function simpler than S, since the highest term A
has been cancelled. .Let the highest term of S, be

h=a, x4 zfiznzh ...
A symmetric function with a still lower highest term is given by
8,=8,—a, ¢ Pickimeh ...

Since the degrees of S, and S, are not greater than the degree of S,
and since there is only a finite number of terms z ™z, Mz ...
of a given degree which are lower than the term h, we must ulti-
mately obtain, by a repetition of the process, the symmetrie
function 0; :

0=S8g—a) c;% Pk e e Cs—% . s

‘We therefore reach the desired result
S=a,c*Pcf V... +achPich M. . .+ ..ot apePrc - .,
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To show that the expression of a symmetrie function S in terms
of ¢,..., Cx i8 unique, suppose that S can be reduced to both
d(cy, €35 -« -5 €a) and ¢(cy, C,, . . ., Cn), Where ¢ and ¢ are different
integral functions of ¢, ..., ¢,. Then ¢—¢, considered as a func-
tion of ¢, ..., ¢4, is not identically zero. After collecting like
terms in ¢—¢, let bec,Pey? ... be a term with b#0. When ex-
pressed in z,, ..., &, it has for its highest term

b xl¢+3+1+.-- zzﬁ+1+--- an'"' v

As shown above, a different term b’c,*c,f’cy” ... has a different
highest term. Hence of these highest terms one must be higher
than the others. Since the coefficient of this term is not zero,
the function ¢—¢ cannot be identically zero in z,,..., z,. This
contradicts the assumption that S=¢, S=¢, for all values of
Tyyoeny Tne

CorOLLARY. Any integral symmetric function of z,, ..., T, with
integral coefficients can be expressed as an integral function of ¢;, . .., Cn
with integral coefficients.

Examples showing the practical value of the process for the
computation of symmetric functions are given in Serret, Algébre
supérieure, fourth or fifth edition, vol. 1, pp. 389-395.

ON THE GENERAL EQUATION.

Let the coefficients ¢,, c,, . . ., ¢, be indeterminate quantities.
The roots x,, %,, ..., z, are functions of ¢,, .. ., c,; the notation
%y, ..., Zy is definite for each set of values of ¢,,..., c,. We
proceed to prove the theorem:*

If a rational, integral function of z,,..., T, with constant
coefficients equals zero, it 18 tdentically zero.

Let J[z,, . .., 2,]=0. Let &,..., é, denote indeterminates
and gy, . . ., 0, their elementary symmetric functions &,+. ..+ &,
ey §.6...86,. Then

*This proof by Moore is more explicit than that by Weber, Algebra, 11
(1900), § 566.
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I,y . . oy §0,]=Ploys . . -y aal,

the product extending over the n! permutations s, ..., 8y of
1,...,n, and ¥ denoting a rational, integral function. Hence

II{/’[Z.‘, ey xc,.]'_‘ !F[cu e ey Cal=0,

since one factor ¢fz;,...,x,] is zero. Since ¢, ..., c, are
indeterminates, ¥[c,, ..., ¢x] must be identically zero, i.e.,
formally in ¢, ..., ¢n. Consider ¢, ..., cx to be functions of
new indeterminates y;, ..., yn. Then

Ple,Way v ooy Yn)y oo vs Cnl¥yy+ -+, Yn)]=0
formally in y,, ..., yn. Hence, by a change of notation,
Ploy(€py e v s Endyvvey onlEay e vy En)]=0
formally in &, ..., £,. Hence, for some factor,
Hlap - o5 €6, ]=0
formally in §,,..., £x. As a mere change of notation,
ooy €n]=0.

As an application, we may make a determination of the group
of the general equation more in the spirit of the theory of Galois
than that of § 64. If, in the domain R=(c,, ..., ¢,), a rational
function ¢(z,, ..., z,) with coefficients in R has a value lymg
in R, there results a relation

dzy, ..., za]=0,

upon replacing ¢;, . . ., ¢, by the elementary symmetric functions
of 2y, ..., Zn. By the theorem above, [z, ..., z,,]=0, so that

DTy ¢ 005 Tay)=P(Zy, « « oy Tn).

8L 28
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Quartic, 6, 28, 35, 85
Quintic, 91 /
Quotient-group, 68

Rationality, 43

Rational function, 45
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Reducible, 46, 59

Regular, 59, 68, 70, 73
Resolvent, 5, 24, 49, 60, 64

Self-conjugate, 32
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Simple group, 37, 39, 69, 98
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Unaltered, 16, 45, 56, 60
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