Here's a solution to problem 4(b) that does not use induction. I thought of this after writing up the solutions. I couldn't bother editing the solutions, but to my pleasant surprise, another student came up with a similar solution, so I decided to share it with you.

Theorem: (Denseness of \mathbb{Q}) If $a, b \in \mathbb{R}$ and $a<b$, then there exists $r \in \mathbb{Q}$ such that $a<r<b$.
(10 points) Prove that for any $a, b \in \mathbb{R}$, with $a<b$, there are an infinite number of rational numbers strictly between a and b. You may or may not use the denseness of \mathbb{Q} theorem stated above. You also may or may not use induction here.
$P f$: Assume to the contrary that there are not an infinite number of rationals strictly between a and b. We know there is at least one, by the denseness of \mathbb{Q} theorem, so let us suppose there is only a finite amount. Say there are n (and no more) rationals between a and b. That is, we have rationals $r_{1}, r_{2}, \ldots, r_{n}$ such that $a<r_{n}<r_{n-1}<\ldots<r_{2}<r_{1}<b$, and there are no more such rationals. Then, applying the denseness of \mathbb{Q} theorem to a and r_{n}, there exists a rational r_{n+1} such that $a<r_{n+1}<r_{n}$. But that gives $a<r_{n+1}<r_{n}<\ldots<r_{1}<b$. So we found another rational between a and b not in our original list. Contradiction.

