Here's an alternative solution to test 1 problem 1(a).
Here we find the inverse of $A=\left(\begin{array}{ccc}2 & 2 & -2 \\ -1 & 0 & 2 \\ 1 & 2 & 1\end{array}\right)$ using row reduction. Remember, there is no unique way to do this, but it is an example of what such a solution may look like. We will attempt to do it in as few steps as possible. If you can do this by hand in less steps, congratulations.

We augment A with I_{3} and reduce to find A^{-1}.

$$
\begin{aligned}
& \left(\begin{array}{ccc|ccc}
2 & 2 & -2 & 1 & 0 & 0 \\
-1 & 0 & 2 & 0 & 1 & 0 \\
1 & 2 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 0 & -1 & 0 \\
0 & 2 & 3 & 0 & 1 & 1 \\
0 & 2 & 2 & 1 & 2 & 0
\end{array}\right) \begin{array}{c}
-R 2 \\
R 2+R 3 \\
R 1+2 R 2
\end{array} \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & -2 & 0 & -1 & 0 \\
0 & 2 & 2 & 1 & 2 & 0 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right)_{R 2-R 3}^{R 1} \begin{array}{c}
R 3 \\
R 2
\end{array} \\
& \left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -2 & -3 & 2 \\
0 & 2 & 0 & 3 & 4 & -2 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right) \begin{array}{c}
R 1+2 R 3 \\
R 2-2 R 3 \\
R 3
\end{array} \\
& \left(\begin{array}{ccc|ccc|c}
1 & 0 & 0 & -2 & -3 & 2 \\
0 & 1 & 0 & 3 / 2 & 2 & -1 \\
0 & 0 & 1 & -1 & -1 & 1
\end{array}\right) \begin{array}{c}
R 1+2 R 3 \\
R 2-2 R 3 \\
R 3
\end{array} \\
& \Rightarrow A^{-1}=\left(\begin{array}{ccc}
-2 & -3 & 2 \\
3 / 2 & 2 & -1 \\
-1 & -1 & 1
\end{array}\right)
\end{aligned}
$$

