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With The General Topology of Dynamical Systems I am attempting to
provide a broad foundation for the dynamics of maps and flows on com-
pact metric spaces. My intent is to unify concepts of chain recurrence, Lya-
punov functions, attractor/repellor theory, topological perturbation theory
and topological hyperbolicity in an attractive and useful way. However, some
readers familiar with the subject find my approach and notation to be id-
iosyncratic. With this guide I hope to seduce prospective readers, enlarge
the congregation of believers and generally sell the product. It provides a
sketch of each of the eleven chapters of the book with emphasis on the earlier
ones where the notation is framed out.
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1. Closed Relations and Their Dynamic Extensions.

In order to study the dynamics of a continuous map on a compact metric
space it is useful to consider more general relations on such spaces. In pur-
suing this strategy through the early chapters we mimic function notation
to allow the reader to use intuition which has been adapted to functions. A
function g : X1 → X2 is the subset {(x1, g(x1)) : x1 ∈ X1} of X1×X2 (usually
called “the graph of g”). For example, the identity map 1X is the diagonal
subset of X × X. In general, any subset g of X1 × X2 can be regarded as
a relation from X1 to X2, written g : X1 → X2. Thus, for x ∈ X1 g(x) is
the, possibly empty, subset {y : (x, y) ∈ g} of X2. For A ⊂ X1 the image
g(A) = ∪{g(x) : x ∈ A} = {y : (x, y) ∈ g for some x ∈ A}. As the notation
suggests composition of functions extends to relations. For g : X1 → X2 and
h : X2 → X3, h◦g : X1 → X3 is the relation {(x, z) : (x, y) ∈ g and (y, z) ∈ h
for some y ∈ X2} so that (h ◦ g)(A) = h(g(A)), a special case of the associa-
tive law, which holds for relation composition. If f is a relation on X, i.e.
f : X → X, we define fn as the n-fold composition for n = 1, 2, . . . and set
f 0 = 1X , as usual. g : X1 → X2 has a natural inverse relation g−1 : X2 → X1,
{(y, x) : (x, y) ∈ g}. Thus, for B ⊂ X2, g−1(B) = {x : g(x) ∩ B 6= ∅}. In
particular, g−1(X2) is the domain of g, Dom(g), namely {x : g(x) 6= ∅}. The
only point requiring care here is that neither g ◦ g−1 nor g−1 ◦ g need be
the identity map. So if we define f−n to be (f−1)n = (fn)−1, the equation
fn1 ◦ fn2 = fn1+n2 is true when both n1 and n2 have the same sign, but need
not hold otherwise. The precedent for this notation occurs in the theory of
uniform spaces. With ε ≥ 0 and d the metric on X we define Vε (or V̄ε)
to be the set of pairs (x1, x2) such that d(x1, x2) < ε (resp. d(x1, x2) ≤ ε).
So V −1

ε = Vε expresses symmetry of the metric and Vε1 ◦ Vε2 ⊂ Vε1+ε2 is the
triangle inequality.

Because of our standing assumption of compactness, closed relations, i.e.
closed subsets of the product, satisfy a number of special properties. The
composition and inverse of closed relations are closed, and g and A closed
imply g(A) is closed (Proposition 1.1). In particular, the domain of g is
closed. Furthermore, a closed relation g : X1 → X2 satisfies the continuity
property. For every ε > 0 and x ∈ X, there exists δ > 0 such that f(Vδ(x)) ⊂
Vε(f(x)) (Corollary 1.2).

This relationspeak has a productive purpose beyond the delights of onanis-
tic formal manipulation. We now introduce operations which associate to a

2



relation various larger relations. Even for maps much of our theory is conve-
niently developed using these enlargements (prolongations). Fundamental is
the orbit relation for a relation f on X:

Of =
∞⋃

n=1

fn,

i.e. y ∈ Of(x) if y ∈ fn(x) for some n = 1, 2, . . .. Observe that we begin
with n = 1 rather than n = 0 so that it need not be true that x ∈ Of(x).
Of is the smallest transitive relation containing f but is usually not closed.

For a sequence of closed sets {Cn} the lim sup, C, is ∩n∪m≥nCn and
∪nCn = (∪nCn) ∪ C (Exercise 1.5). So for x ∈ X we define:

ωf(x) = lim sup{fn(x)}
Rf(x) = Of(x) = Of(x) ∪ ωf(x).

While each of these sets is closed, the limit point relation ωf and the orbit
closure relation Rf are not usually closed in the product. To get closed
relations, we define:

Ωf = lim sup{fn}.
N f = Of = Of ∪ Ωf.

By taking the closure of a transitive relation, we may lose transitivity. Be-
cause we want both properties we define:

Gf = the smallest closed, transitive relation containing f.

A relation f is both closed and transitive iff f = N f . Because the operations
are defined for relations we can iterate to reach Gf by a transfinite induction.
Start with F0 = f and define Fα+1 = NFα and Fα = ∪β<αFβ for a limit
ordinal α. This process stabilizes at some countable ordinal to yield Gf
(Exercise 1.18).

A somewhat larger relation, easier to describe directly is Conley’s chain
relation:

Cf = ∩ε>0O(V̄ε ◦ f).

As the intersection of transitive relations Cf is transitive. It is closed because
for f a closed relation:

Cf = ∩ε>0N (V̄ε ◦ f ◦ V̄ε).
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(Proposition 1.8).

For a map f these are familiar definitions which I hope the unfamiliar
notation does not conceal. Of(x) consists of the points of the positive orbit
sequence of x beginning with time n = 1 and ωf(x) is the set of limit
points of the sequence. y ∈ N f(x) iff for every ε > 0 there is a finite orbit
sequence beginning ε close to x and ending ε close to y, i.e. for some x1 with
d(x1, x) < ε we have d(fn(x1), y) < ε for some n ≥ 1. y ∈ Cf(x), x chains
to y, iff for every ε > 0 there is a sequence {x0, x1, . . . , xn} with n ≥ 1 such
that x0 = x, xn = y and d(f(xi−1), xi) ≤ ε for i = 1, . . . , n.

To contrast G and C observe that G1X = 1X but C1X = ∪{C × C : C is
a component of X} (Exercise 1.9).

For any relation F on X the cyclic set of F is defined by:

|F | = Dom(F ∩ 1X) = {x : (x, x) ∈ F} = {x : x ∈ F (x)}.
The cyclic sets of the various enlargements of f define the following con-

cepts of recurrence:

x ∈ |f |: x is a fixed point of f .

x ∈ |Of |: x is a periodic point of f .

x ∈ |Rf |: x is a recurrent point of f .

x ∈ |N f |: x is a non-wandering point of f .

x ∈ |Gf |: x is a generalized non-wandering point of f .

x ∈ |Cf |: x is a chain recurrent point of f .

(This is why we did not include f 0 = 1X in the enlargements of f .)
At this point one proceeds to investigate the formal properties which

follow from these definitions (Proposition 1.11), e.g. A(f−1) = (Af)−1 for
A = O, Ω, N , G and C but not usually for A = ω or R. Certain additional
properties hold when f is a map (Proposition 1.12).

A continuous map h : X1 → X2 maps a relation f1 on X1 to f2 on
X2 when h× h takes the subset f1 into the subset f2, or, equivalently, when
h◦f1 ⊂ f2◦h (Definition 1.15). This is the ordinary notion of semi-conjugacy
when f1 and f2 are continuous maps. If h maps f1 to f2 then it maps Af1

to Af2 for the above operations A = O, ω, etc. (Proposition 1.17).
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2. Invariant Sets and Lyapunov Functions.

For a relation f on X a subset A ⊂ X is called + invariant if f(A) ⊂ A
and invariant if f(A) = A. If f and A are closed and A is + invariant then
{fn(A)} is a decreasing sequence whose intersection is the largest invariant
subset contained in A (Proposition 2.4). A relation F is transitive iff F 2 ⊂ F
in which case {F n} is a decreasing sequence of relations. If F is closed as
well as transitive then

ΩF = ωF = ∩n{F n}
is closed and satisfies ΩF ◦ ΩF = ΩF . For a closed relation f we apply this
construction to F = Cf to get the limit chain relation ΩCf . It satisfies

Cf = Of ∪ ΩCf.

(Proposition 2.4).
If A is closed and + invariant for f then it is + invariant for Rf . N f

+ invariance is a stronger condition. In fact, A is N f + invariant iff it is
stable for f meaning that the f + invariant subsets include a base for the
neighborhood system of A (Proposition 2.7). From this result one obtains a
Urysohn Lemma construction to build Lyapunov functions (Lemma 2.10).

A continuous real valued function L on X is called a Lyapunov function
for f if y ∈ f(x) implies L(y) ≥ L(x). Thus, y1 ∈ f−1(x) and y2 ∈ f(x)
imply L(y1) ≤ L(x) ≤ L(y2). x is called a regular point for the Lyapunov
function if these inequalities are strict for all such y1 and y2. Otherwise, x is
called a critical point for the Lyapunov function L. We denote by |L| the set
of critical points. The subset L(|L|) of R is the set of critical values. The
rest of R are the regular values.

If L is a Lyapunov function for f then it is automatically a Lyapunov
function for Gf with the same notion of critical point. Hence |Gf | ⊂ |L|
(Proposition 2.9). Furthermore, there exists a Lyapunov function L with
|Gf | = |L| (Corollary 2.13).

A Lyapunov function for f need not be a Lyapunov function for Cf . There
is a homeomorphism f on the circle X such that |f | = |Gf | is a Cantor set
but Cf = X × X. The only Cf Lyapunov functions are constants but f
admits a strict Lyapunov function, L, i.e. L increases on all nonequilibrium
orbits (page 35). However, if L is a Lyapunov function for a relation f and
the set of critical values is nowhere dense then L is a Cf Lyapunov function
(Exercise 3.16).
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As an application one can show that a closed total order (a preference)
on X is determined by a utility function (Exercise 2.19).

3. Attractors and Basic Sets.

For a closed relation f on X a closed subset U of X is called inward if
f(U) is contained in the interior, Int U . By compactness, U is inward iff it is
Vε ◦f + invariant for some positive ε. So an inward set is Cf + invariant. An
attractor for f is a closed invariant subset A such that for some sequence of
closed sets {Un} f(Un) ⊂ Int Un+1 ⊂ Un+1 ⊂ Int Un and ∩nUn = A (Exercise
3.4). This is a strong form of asymptotic stability. An attractor can be
characterized by a number of conditions of different apparent strength.

A closed + invariant subset A is called a preattractor if it satisfies the
following equivalent conditions:

(a) There is a closed, + invariant neighborhood U of A such that ∩nfn(U) ⊂
A.

(b) There is an inward set U containing A such that ∩nf
n(U) ⊂ A.

(c) A is Cf + invariant and A ∩ |Cf | is open, as well as closed, in |Cf |.
(d) {x : ΩCf(x) ⊂ A} is a neighborhood of A.
An attractor is precisely an f invariant preattractor. If B is a preattractor

then ∩nfn(B) is an attractor. Finally, a closed set is Cf + invariant iff it is the
intersection of preattractors (Theorem 3.3). There are additional recognition
conditions in the map case (Theorem 3.6).

An attractor A is determined by its trace on the chain recurrent set,
A ∩ |Cf |. In fact, A = Cf(A ∩ |Cf |) (Proposition 3.8).

A repellor is an attractor for f−1. An attractor- repellor pair A+, A−
are an attractor and a repellor such that A+ ∩ A− = ∅ and |Cf | ⊂ A+ ∪
A−. For every attractor A+ there is a unique complementary repellor A− =
Cf−1(|Cf | − A+). If x 6∈ A+ ∪ A− then ΩCf(x) ⊂ A+ and ΩCf−1(x) ⊂ A−
(Proposition 3.9).

The chain relation can be recovered from the attractor structure. If x
is a chain recurrent point then y = x or y ∈ Cf(x) iff for every attractor
A, x ∈ A ⇒ y ∈ A (Proposition 3.11). Using this we obtain complete Cf
Lyapunov functions.

On the closed set of chain recurrent points, |Cf |, (Cf) ∩ (Cf)−1 is an
equivalence relation. The equivalence classes are called the basic sets for f .
So x1 and x2 are chain recurrent points in the same basic set iff x1 ∈ Cf(x2)
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and x2 ∈ Cf(x1). A Cf Lyapunov function is constant on each basic set.
For a closed relation f , there exists a Cf Lyapunov function L such that

|L| = |Cf | and L takes distinct basic sets to distinct values. Furthermore,
the set of critical values is closed and nowhere dense in R. Such a map L is
called a complete Cf Lyapunov function (Theorem 3.12).

4. Mappings–Invariant Sets and Transitivity Concepts.

A mapping f has a rich collection of constructions leading to closed in-
variant sets. For example, ωf(x) is invariant for a map f but need not be +
invariant for a closed relation. For any relation f and any closed subset B
the restriction fB is the relation f ∩ (B × B) on B. If f is a map and B is
+ invariant then fB is a map on B.

A decomposition of a closed, + invariant subset A is a disjoint pair of
closed, + invariant subsets with union A (page 63). A is indecomposable if
the only decomposition for A is the trivial one {A, ∅}.

A relation F on X is dynamically transitive or acts transitively on X if
F (x) = X for all x, i.e. F = X×X. For a map f , f is dynamically transitive
iff X consists of a single fixed point and Of is dynamically transitive iff X
consists of a single periodic orbit. For Cf , N f and Rf the notions are less
trivial.

A map f on X is called chain transitive when it satisfies the equivalent
conditions: (1) Cf = X×X, (2) For some x ∈ X, Cf(x) = X = Cf−1(x), (3)
X is the only nonempty attractor, (4) X is indecomposable and |Cf | = X.
f is called topologically transitive when it satisfies the equivalent conditions:
(1)N f = X×X, (2) For some x ∈ X, Rf(x) = X, (3) X is the only closed +
invariant subset with a nonempty interior, (4) {x : ωf(x) = X} is a residual
subset of X. f is called minimal when it satisfies the equivalent conditions:
(1) Rf = X × X, (2) For some x ∈ X, Rf(x) = X = (Rf)−1(x), (3) X
is the only closed, nonempty + invariant subset, (4) {x : ωf(x) = X} = X
(Theorem 4.12).

A closed, + invariant subset B of X is called a chain transitive/topologically
transitive/minimal subset if the restriction fB satisfies the corresponding
property. The limit point sets ωf(x) and the basic sets, Cf(x)∩Cf−1(x) (for
x ∈ |Cf |), are chain transitive subsets (Corollary 4.13 and Proposition 4.14).
In particular, they are indecomposable. If x is recurrent, i.e. x ∈ |ωf |, then
ωf(x) is a topologically transitive subset. Let m[f ] denote the union of all
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the minimal subsets for f .

|f | ⊂ |Of | ⊂ m[f ] ⊂ |ωf | ⊂ ωf(X) ⊂ |Ωf | ⊂ |Gf | ⊂ |Cf |.

We call the closure of m[f ] the min-center of f . The closure of |ωf | is the
Birkhoff center of f . The closure of ωf(X) is the positive limit point set for
f , denoted l+[f ]. For a homeomorphism f we let αf denote ω(f−1) and l−[f ]
denote the closure of αf(X). l[f ] = l+[f ] ∪ l−[f ] is the limit point set for a
homeomorphism f .

5. Computation of the Chain Recurrent Set.

For a homeomorphism f on X there are two procedures for estimating
the chain recurrent set.

Let U be a finite collection of subsets of X whose interiors cover X.
Regard U as a discrete metric space, a finite “approximation” of X. The
mesh of U is the maximum of the diameters of the elements of U . Associated
to f is the closed relation Uf on U .

Uf = {(U1, U2) ∈ U × U : (U1 × U2) ∩ f 6= ∅},

i.e. U2 ∈ Uf(U1) ⇔ U2 ∩ f(U1) 6= ∅.
Since the metric space U is discrete, Vε ◦ Uf = Uf for some ε > 0. So
CUf = OUf . Furthermore, Uf chains and f chains can be related in a
natural way (Lemma 5.1). |OUf | consists of the elements of U which are
cyclic for OUf , i.e. which are periodic for Uf . Define the subset of X,
|U|f = ∪|OUf |. So x ∈ |U|f iff x ∈ U for some cyclic element U of U . The
chain recurrent set |Cf | is contained in |U|f and the latter sets close down
upon |Cf | as the mesh of U tends to zero (Theorem 5.2). One can similarly
estimate the individual basic sets as well (Theorem 5.8).

Instead, we can approach |Cf | from the limit point set l[f ], the closure
of ωf(X) ∪ αf(X). A closed, invariant set F is called l[f ] separating if
F ∩ l[f ] is open, as well as closed, in l[f ], i.e. {F ∩ l[f ], l[f ] − (F ∩ l[f ])}
is a decomposition for l[f ]. Because ωf(x) is an indecomposable subset of
l[f ], ωf(x) is contained in an l[f ] separating set F if ωf(x) ∩ F 6= ∅. The
collection of all such x is the inset, W+(F ). Similarly, the outset W−(F )
consists of those points x such that αf(x) meets F . If F is l[f ] separating
and ωf(x)∩F = ∅, i.e. x 6∈ W+(F ), but ΩCf(x)∩F 6= ∅, then ΩCf(x) meets
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W+(F ) −W−(F ). This technical result, the Shub-Nitecki Lemma, requires
a rather elaborate proof (Lemma 5.13).

An invariant decomposition F for f is a finite, pairwise disjoint family
of closed invariant sets whose union contains l[f ] (page 86). Regarding F
as a discrete metric space we associate to f a number of different relations:
(F1, F2) ∈ F1f if W−(F1) ∩W+(F2) 6= ∅ i.e. for some x ∈ X, αf(x) ⊂ F1

and ωf(x) ⊂ F2. (F1, F2) ∈ F5f if Cf(F1) ∩ F2 6= ∅ (page 89). Clearly,
F1f ⊂ F5f . Using the Shub-Nitechi Lemma one shows that their transitive
extensions agree, OF1f = OF5f and we denote this common extension OFf
(Corollary 5.14). If F+ is an OFf invariant subset of F and F− the com-
plementary (Ff)−1 invariant set then A+(F+) ≡ ∪{W−(F ) : F ∈ F+} and
A−(F−) ≡ ∪{W+(F ) : F ∈ F−} are an attractor- repellor pair. For any F ∈
F the associated F -basic set B(F ) is A+((OFf)(F )) ∩ A−((OFf−1)(F )).
The F basic sets form an invariant decomposition and every basic set is con-
tained in a unique F basic set (Theorem 5.15). An invariant decomposition
F is called a fine decomposition if each F ∈ F meets a unique basic set.
Then the F basic sets are the basic sets and every attractor-repellor pair
for f comes from a pair F+,F− as above. f admits a fine decomposition iff
there are only finitely many basic sets (or, equivalently, there are only finitely
many attractors for f) (Proposition 5.17).

An equivalent way of presenting the invariant decomposition results uses
filtrations (Exercise 5.23).

6. Chain Recurrence and Lyapunov Functions for Flows.

For a flow ϕ on a compact metric space X the structures of the previous
chapters extend and are closely related to those of the associated time one
map f . Thus, ωϕ(x) is the smallest closed ϕ invariant set containing ωf(x)
(Proposition 6.3) and ΩCϕ = ΩCf (Proposition 6.5). Chain recurrence, basic
sets and attractors are concepts which agree for ϕ and f (Propositions 6.7
and 6.9).

L is called a Lyapunov function for the flow ϕ if the function L(ϕ(x, t))
is differentiable in t for every x ∈ X and ϕ · L(x) ≡ d

ds
(L(ϕ(x, s))|s=0 is

continuous and nonnegative. The critical point set for the flow Lyapunov
function, denoted |L|ϕ, is {x : ϕ · L(x) = 0}. L is then a Lyapunov function
for f and |L| ⊂ |L|ϕ. Conversely, if L is a Lyapunov function for f then
L̄(x) =

∫ 1
0 L(ϕ(x, s))ds is a Lyapunov function for the flow with |L̄|ϕ ⊂ |L|
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(Lemma 3.10).
If X is a smooth manifold and ϕ is the solution flow associated with C1

vectorfield ξ then L is a Lyapunov function for the vectorfield ξ if L is a C1

function and for all x, either dxL(ξ(x)) > 0 or dxL = 0. L is then a Lyapunov
function for the flow with ϕ ·L(x) = dxL(ξ(x)). |L|ϕ is then the critical point
set in the usual sense, {x : dxL = 0}. If ξ is a Cr vectorfield (1 ≤ r ≤ ∞)
then ξ admits a Cr Lyapunov function for the vectorfield which is a complete
Cf Lyapunov function in the sense of Chapter 3 (Theorem 6.12). Using such
Lyapunov functions, inward sets can be constructed which are manifolds on
the boundary of which the vectorfield always points inward (Exercise 6.18).
Finally, on a smooth manifold the chain relation ΩCϕ for the solution flow of
ξ can be described using piecewise smooth continuous paths whose velocity
vectors are close to ξ (Theorem 6.14).

7. Topologically Robust Properties of Dynamical Systems.

For a compact metric space X, the space C(X) is the compact metric
space of closed subsets of X with the Hausdorff metric. A relation g : X1 →
X2 is called pointwise closed if g(x) is closed for every x. For example, with
f a closed relation on X, Rf and ωf are pointwise closed relations which
are not closed. Such a relation can be regarded as a map from X1 to C(X2).
We get the notions of upper semicontinuous (usc) and lower semicontinuous
(lsc) relations by considering such maps (Proposition 7.11). For example, a
usc relation is just a closed relation. For a usc or lsc relation g : X1 → X2

the points of continuity of the map from X1 to C(X2) is a residual subset
(Theorem 7.19). It follows, for example, that for a continuous map f on X
the set {x : ωf(x) = Ωf(x)} is residual (Proposition 7.22).

These ideas yield topological perturbation results. C(X; X), the set of
continuous functions on X with the sup metric, is a complete metric space
and the map from C(X; X) → C(X × X) regarding each such map as a
closed relation is a homeomorphism onto its image (Proposition 7.20). The
maps C, ΩC : C(X × X) → C(X × X) and | |, | | ◦ C : C(X × X) →
C(X) associating to a closed relation f the chain relation Cf , the limit chain
relation ΩCf , the fixed point set |f | and the chain recurrent set |Cf | are usc
(Proposition 7.16 and Theorem 7.23). So they are continuous at points of a
residual subset of C(X×X) as are the restrictions to C(X; X). One can then
recover Takens’ partial results toward Zeeman’s so-called tolerance stability
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conjecture (Corollary 7.30).
Miscellaneous applications include: a “Fubini Theorem” for residual sets

(Exercise 7.32), and the observation that on a residual subset of C(X; X)
Cf = N f for certain spaces X, generalized homogeneous spaces, which in-
clude manifolds of dimension at least 2 and Cantor spaces (Exercise 7.40 and
Exercise 9.16).

8. Invariant Measures for Mappings.

For a compact metric space X, the space P (X) is the compact metric
space of Borel probability measures on X with the Hutchinson metric, yield-
ing the topology of weak convergence (Exercise 8.16). With f a continuous
map on X associate to each µ in P (X) the set M(µ) of limit points of the se-
quence of Cesaro averages { 1

n

∑n−1
i=0 f i

∗µ}. Each M(µ) is a closed, connected,
nonempty subset of P (X) consisting of f invariant measures (Proposition
8.3). Let M(x) denote M(δx) where δx is the point mass at x. Call x
a convergence point for f if M(x) contains a single measure µx, i.e. the
Cesaro averages of {δfnx} converge to µx. The set Con(f) of convergence
points is a Borel set of full measure, i.e. µ(Con(f)) = 1 for every f in-
variant measure µ (Proposition 8.4). For a topologically transitive map f
there is a closed connected, nonempty set I∗ of invariant measures such that
M−1(I∗) = {x : M(x) = I∗} is residual. If I∗ contains more than one
point (the usual situation) then M−1(I∗) is disjoint from Con(f) and so has
measure 0 with respect to every invariant measure (Theorem 8.11).

Ergodicity, weak mixing and mixing as well as their topological analogues
are described. A chain transitive map automatically satisfies the chain ana-
logue of mixing unless the map projects onto a periodic orbit (Exercise 8.22).

9. Examples–Circles, Simplex and Symbols.

From a constant vectorfield one obtains the classical irrational flow on
the torus whose time one map is the product of rotations. Multiply by a
C1 nonnegative function α on the torus which vanishes at a single point e.
The resulting flow has a single fixed point at e. By choosing α properly one
can obtain flows that do and flows that do not have an invariant measure
λ equivalent to Lebesque measure. In either case the flow is topologically
mixing and I∗ is the entire set of invariant measures. In the former case this
set is the segment in P (X) connecting λ with δe. In the latter case, δe is the
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only invariant measure (Theorem 9.2).
On the simplex of nonnegative vectors in Rn which sum to 1, an n × n

matrix can be used to define a differential equation modeling the evolution-
ary dynamics of a game. Certain limit classes of measures can be used as
topological invariants to distinguish similar appearing dynamics. The exam-
ple which is computed uses the paper-rock-scissors game dynamics (Theorem
9.5).

With Z2 = {0, 1}, let Z∞2 be the space of sequences in Z2 with the product
topology. On Z∞2 the shift map s is topologically mixing with the set of
periodic points, |Os|, dense. The large set of invariant measures includes the
Bernoulli measures, those measures where the separate coordinate maps to Z2

are independent and identically distributed. Furthermore, for x in a residual
subset (M−1(I∗)) M(x) is the entire set of invariant measures (Theorem
9.11). Mapping Z∞2 to the interval I = [0, 1] by using base 2 expansions we
get that disjoint from the set of normal numbers in I, {x : M(x) = λ} where
λ is Lebesgue measure, is a residual set of Lebesgue measure 0 whose time
averages under the shift accumulate upon every invariant measure.

We can also regard Z∞2 as the ring of 2-adic integers. Then the shift map
s can be interpreted by analogy with the map extending the 3x + 1 problem
of Collatz to the 2- adics (Exercise 9.17).

10. Fixed Points.

We suspend, for a chapter, our compactness assumption to consider Lip-
schitz maps on Banach Spaces and their linear approximations. The central
result is the stable-unstable manifold theorem for a Lipschitz perturbation
of a hyperbolic linear map. This is proved by applying to a generalization
of the theorem, due to Conley, the elegant fixed-point proof due to Irwin
(Theorems 10.13 and 10.14). Barnsley’s derivation of certain fractals as the
fixed points of set maps is also considered (Exercise 10.21).

11. Hyperbolic Sets and Axiom A Homeomorphisms.

For f a homeomorphism on X and K a closed invariant subset, K is
isolated if for some γ > 0 ∩+∞

n=−∞fn(Vγ(K)) = K, i.e. if {fn(x) : n ∈ Z} lies
entirely in Vγ(K) then x ∈ K. K is isolated rel Per (f) if {fn(x) : n ∈ Z} ⊂
Vγ(K) implies x ∈ K for any periodic point x. K is an expansive subset if for
some γ > 0, ∩∞n=−∞(f×f)n(V̄γ∩[V̄γ(K)×V̄γ(K)]) is contained in the diagonal
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1X , i.e. d(fn(x1), K) ≤ γ, d(fn(x2) < K) ≤ γ and d(fn(x1), f
n(x2)) ≤ γ

for all n ∈ Z imply x1 = x2. K satisfies the Shadowing Property if for every
ε > 0 there exists δ > 0 such that for every δ chain in K, i.e. sequence
{x0, . . . , xn} in K such that d(f(xi−1), xi) ≤ δ for i = 1, . . . , n, is ε shadowed
by some 0 chain, i.e. for some x ∈ X, d(f i(x), xi) ≤ ε for i = 0, 1, . . . , n.
K is called a topologically hyperbolic subset if it is an expansive subset and
satisfies the Shadowing Property. A hyperbolic subset for a diffeomorphism
is a topologically hyperbolic subset (Theorem 11.29 and Corollary 11.30).

If a topologically hyperbolic invariant subset K is isolated rel Per f then
the restriction fK has finitely many basic sets. Each of these is an isolated,
topologically transitive subset with periodic points dense (Theorem 11.13).
f is called an Axiom A homeomorphism if the chain recurrent set |Cf | is
topologically hyperbolic. For such a homeomorphism there are finitely many
basic sets on each of which f is topologically transitive. Furthermore, |Cf | is
an isolated invariant set in which the periodic points are dense. For every ε >
0 there exists δ > 0 so that every homeomorphism g δ-close to f in C(X; X)
satisfies |Cg| ⊂ Vε(|Cf |) and there exists a continuous map kg : |Cg| → |Cf |
mapping the restriction of g to the restriction of f (Theorem 11.19). f is
called expansive if the whole space X is an expansive subset and f is called
an Anosov homeomorphism if X is a topologically hyperbolic subset. For an
expansive homeomorphism the space X is naturally subdivided by the stable
and unstable “foliations”. When f is Anosov these yield a local product
structure (Exercise 11.38).
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