Name:

1. (8 points) Solve the IVP $\frac{dy}{dt} - 2y = 4 - t, y(1) = 0.$

$$\begin{bmatrix}
\bar{e}^{2t}y
\end{bmatrix}' = (4-t)\bar{e}^{2t}$$

$$\bar{e}^{2t}y = -2\bar{e}^{2t} + \frac{1}{2}t\bar{e}^{2t} + \frac{1}{4}\bar{e}^{2t} + C$$

$$y = -\frac{7}{4} + \frac{1}{2}t + Ce^{+2(t-1)}$$

$$\frac{3}{4}$$

2. (8 points) Solve the IVP $ty' + 2y = 4t^2, y(1) = 0$.

$$[t^{2}y]' = 4t^{3}$$

$$t^{2}y = t^{4} + C$$

$$y = t^{2} + \frac{c}{t^{2}} \qquad (C = -1)$$

$$y = t^{2} - \frac{1}{t^{2}}$$

3. (8 points) Solve the IVP $y' = \frac{1-2x}{y}, y(1) = -2$.

$$y dy = (10 - 2x) dx$$

$$y^{2} = x - x^{2} + C$$

$$y = -\sqrt{2x - 2x^{2} + 4}$$

$$y = -\sqrt{2x - 2x^{2} + 4}$$

4. (8 points) Find the value of b for which $(ye^{2xy} + x) + bxe^{2xy}y' = 0$ is exact and then solve it using that value of b.

$$M_{y} = e^{2xy} + 2xye^{2xy} = (b + 2bxy)e^{2xy} = N_{x}$$

$$b=1$$

$$\Psi(x,y) = \frac{1}{2}e^{2xy} + \frac{x^{2}}{2} + C$$

- 5. Given the differential equation y'' y' 2y = 0.
 - (a) (6 points) Find the general solution.
 - (b) (2 points) Find α so that the unique solution satisfying the differential equation and initial values $y(0) = \alpha, y'(0) = 2$ approaches zero as $t \to \infty$.

(a)
$$y = c_1 e^{2t} + c_2 e^{t}$$

(b) $d = y(0) = c_1 + c_2$
 $2 = y'(0) = 2c_1 - c_2$
 $2 + d = 3c_1 \rightarrow d = -2$
 $|C_1 = 0|$

- 6. (8 points) Given the differential equation $t^2y'' 2y = 0$ when t > 0.
 - (a) Verify that $y_1(t) = t^2$ and $y_2(t) = \frac{1}{t}$ are solutions.
 - (b) Find the Wronskian of the pair from part (a)
 - (c) Verify that the linear combination $y = c_1y_1(t) + c_2y_2(t)$ is also a solution to the differential equation for any constants c_1 and c_2 .

(a)
$$y_1' = 2t$$
 $y_2'' = 2$ $\rightarrow t^2 \cdot 2 - 2t^2 = 0$ \checkmark

$$y_2' = -\frac{1}{t^2} \quad y_2'' = \frac{2}{t^3} \rightarrow t^2 \cdot \frac{2}{t^3} - \frac{2}{t} = 0$$

$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} t^2 & \frac{1}{6} \\ 2t & -\frac{1}{6} 2 \end{vmatrix} = -3$$

(c)
$$y = c_1 y_1 + c_2 y_2$$

 $y' = c_1 y_1' + c_2 y_2''$
 $y'' = c_1 y_1'' + c_2 y_2''$
 $+^2 y'' - 2y = +^2 (c_1 y_1'' + c_2 y_2''') - 2(c_1 y_1 + c_2 y_2') = 0$