
9.2 Geodesic Equations

Theorem 9.2.1 : A curve γ on a surface S is a geodesic iff for any
part γ(t) = σ(u(t), v(t)) of γ satisfies the following two second
order nonlinear ODE:

I u′′E + 1
2u
′2Eu + u′v ′Ev + v ′′F + (v)′2

(
Fv − 1

2Gu

)
= 0.

I v ′′G + 1
2v
′2Gv + u′v ′Gu + u′′F + (u′)2

(
Fu − 1

2Ev

)
= 0.



9.2 Geodesic Equations

Theorem 9.2.1 : (PROOF) these are the same differential equations
as in our textbook but written in a slightly different form.

I We have γ′ = u′σu + v ′σv
I and then

γ′′ = u′′σu + u′(u′σuu + v ′σuv ) + v ′′σv + v ′(u′σuv + v ′σvv )

by the chain rule.

I Now the two ODEs arrive by knowing that γ′′ must be
perpendicular to σu and σv , i.e. the ODEs are γ′′ · σu = 0 and
γ′′ · σv = 0.



9.2 Geodesic Equations

The two geodesic equations, like most nonlinear differential
equations, are usually difficult or impossible to solve explicitly.
However the existence and uniqueness theorem proves there are
many solutions of such systems of nonlinear ODE.

I Existence and Uniqueness Theorem for ODE: there is a unique
geodesic through any given point of a surface in any given
tangent direction.

I The proof of the existence theorem is theoretical. It belongs
in an ODE course, but is usually avoided in an undergraduate
ODE course.

I The geodesic equations allow us to study geodesics in a patch.
We can then use σ to map these plane curves to the surface S.



9.2 Geodesic Equations

EXAMPLE: There is one case in which the geodesic equations are
simple to solve: in our favorite surface the Euclidean plane the
geodesics are lines. The geodesics in an arbitrary surface S are the
analogs of straight lines in the plane. We are studying modern
geomtery by following the implications of the geometry determined
on the surface S when the ”lines” are geodesics. We have already
discussed the strange implications of spherical geometry when the
”lines” are great circles.



9.2 Geodesic Equations

The following corollary can sometimes be helpful in determining
geodesics of a surface S.

I Corollary 9.2.7 : Any local isometry f between surfaces

f : S1 → S2

takes geodesics γ1 of S1 to geodesics γ2 = f ◦ γ1 of S2.

I Proof: since the surfaces are locally isometric they have
identical first fundamental forms:

E1 = E2,F1 = F2,G1 = G2

and therefore the geodesic ODEs are identically solved for γ1

and γ2 = f ◦ γ1.



9.2 Geodesic Equations

Here are two clever ways to use Corollary 9.2.7 to show that the
geodesics of the sphere x2 + y2 + z2 = a2 are great circles.

I Method 1 : verify that the great circles through the North
Pole satisfy the geodesic ODE with I = du2 + cos udv2 and
then rotate.

I Proof by contradiction: Assume the geodesic γ1 that starts at
P and ends at Q on the sphere and does not follow the great
circle determined by P and Q. Then the mirror reflection
through the great circle through P and Q would give a second
geodesic γ2 through P and Q which contradicts the
uniqueness part of the ODE.



9.2 Geodesic Equations

Here is a clever idea using Corollary 9.2.7 to show that the
geodesics of the cylinder x2 + y2 = 1 are helices
γ(t) = (cos t, sin t,mt + b).

I Since we know that the Euclidean plane and the cylinder are
isometric, the Corollary demonstrates that all geodesics of the
sphere are images of geodesics of the plane, which we know to
be lines.



9.2 Geodesic Equations

KEY IDEA: Use the geodesic ODEs in order to study modern
geometry in a patch of a surface S. We can then use our
understanding of calculus and differential equations to study curves
in the plane (u(t), v(t)) with different metrics (= measurement
sticks = first fundamental form) and different straight lines than
the Euclidean plane. The theory that arises from these different
aspects is modern geometry.



9.2 Geodesic Equations

I The sphere x2 + y2 + z2 = 1 with first fundamental form

I = du2 + f (u)dv2 = du2 + cos2(u)dv2.

I The implication of this first fundamental form is that
geodesics are great circles.

I The area of a spherical triangle is then α + β + γ − π
I The parallel postulate is false in Spherical geometry.



9.2 Geodesic Equations

I Spherical geometry is a fascinating example of modern
geometry but it is not, for us, the most interesting modern
geometry because it fails more than the parallel postulate.

I Spherical geometry fails the postulate that through any two
given points P and Q there is a unique line through them, if P
and Q satisfy Q = −P..

I For us the hyperbolic geometry introduced in Chapter 11 is
more interesting. Hyperbolic geometry satisfies all the axioms
of Euclidean geometry except the parallel postulate.



9.2 Geodesic Equations

I 2000 year long goal of geometry: Use the first four postulates
of Euclidean geometry in order to prove the parallel postulate.

I After many failed attempts mathematicians in the 18th
Century turned the problem upside down. They attempted to
prove that parallel postulate could not be proved by the other
four postulates by exhibiting a geometry where the first four
postulates are true but the parallel postulate is false.

I This was completed with the discovery of hyperbolic geometry.



9.3 Geodesic on surfaces of revolution

I Hyperbolic geometry, for us, is motivated by the
pseudosphere, the surface of revolution

σ(u, v) = (f (u) cos v , f (u) sin v , g(u))

when f (u) = eu and g(u) =
∫ √

1− e2udu so that
f ′2 + g ′2 = 1.

I After reparametrizing by setting w = e−u we get a surface
with first fundamental form

dv2 + du2

w2



9.3 Geodesic on surfaces of revolution
I Forgetting the pseudosphere of revolution we will study the

upper-half plane w > 0 with metric

dv2 + du2

w2
.

This will be our model of hyperbolic geometry.
I Show that the geodesic ODEs for for hyperbolic geometry

reduce to

v ′′ − 2v ′w ′

w
= 0

w ′′ +
v ′2 − w ′2

w
= 0.

I Show that the lines vertical half-lines v = v0,w > 0 are
geodesics in hyperbolic geometry. and the semi-circles

(u(t), v(t)) = (u0 + r cos θ(t), r sin θ(t)), 0 ≤ θ(t)π, r > 0

are geodesics of the hyperbolic plane when parametrized by
arc length.



9.3 Geodesic on surfaces of revolution

Show that the semi-circles

(v(t),w(t)) = (v0 + r cos θ(t), r sin θ(t)), 0 ≤ θ(t)π, r > 0

centered on the v -axis are geodesics of the hyperbolic plane when
parametrized by arc length. Hint: first show that θ′ = k2 sin2 θ and
θ′′ = k2 sin θ cos θ for some constant k because (v ,w) is
parametrized by arc length



11 Hyperbolic Geometry

We have already learned that spherical geometry resembles
Euclidean geometry in some ways but not others. One of the most
remarkable discoveries of nineteenth century mathematics is that
the pseudosphere has a geometry that more closely resembles
Euclidean geometry, with geodesics playing the role of straight
lines. In fact the closest correspondence with Euclidean geometry
is obtained by embedding the pseudosphere in a larger geometry,
which is called hyperbolic geometry or non-Euclidean geometry.



11 Hyperbolic Geometry

We find that all of the axioms Euclidean geometry hold in
hyperbolic geometry, except the parallel postulate which states
that if P is a point not on a straight line L then there is a unique
straight line passing through P that does not intersect L.

I Hyperbolic geometry was discovered independently and almost
simultaneously by Bolyai, Lobachevsky, and Gauss in the
1820s.

I The implications of the discovery ended centuries of attempts
by Greek, Arab, and later Western mathematicians to deduce
the parallel postulate from the other four postulates of
Euclidean geometry, and profoundly changed our view of what
geometry is.



11.1 Upper half-plane model

We will study hyperbolic geometry in this class by ignoring the
pseudosphere and studying an expansion of its surface patch
instead.

I For us hyperboic geometry will be the upper half-plane
H = {(v ,w) ∈ R2|w > 0} with first fundamental form

dv2 + dw2

w2
.

I It will often be helpful to identify R2 with the complex
numbers C via

(v ,w)→ v + iw .



11.1 Upper half-plane model

I Proposition 11.1.1 : Hyperbolic angles in H are the same as
Euclidean angles.

I Proposition 11.1.2 : The geodesics in H are the half-lines
parallel to the imaginary axis and the semi-circles with centers
on the real axis.

I Proposition 11.1.3 : There is a unique hyperbolic line passing
through any two distinct points of H.

I Proposition 11.1.3 : The parallel postulate does not hold in H.



11.1 Upper half-plane model

Since there is a unique hyperbolic line passing through any two
points a, b ∈ H it makes sense to define the hyperbolic distance
dH(a, b) between points a and b to be the length of the hyperbolic
line segment joining them. It can be shown that this hyperbolic
length is actually the shortest curve in H joining a and b.



11.1 Upper half-plane model

I Proposition 11.1.4 : The hyperbolic distance between two
points a, b ∈ H is

dH(a, b) = 2 tanh−1 |b − a|
|b − ā|

.

I The appearance of the hyperbolic tangent gives an indication
of the reason H is called ”hyperbolic” geometry.

I Proof 11.1.4 :

d =

∫ ψ

φ

√
(v ′)2 + (w ′)2

w2
dθ =

∫ ψ

φ

dθ

sin θ



11.1 Upper half-plane model

I Theorem 11.1.5 : Let P be an n-sided hyperbolic polygon in
H with internal angles α1, α2, . . . , αn. Then the hyperbolic
area of the polygon is

A(P) = (n − 2)π − α1 − α2 − . . .− αn.

I In particular for a hyperbolic triangle with angles α, β, γ, the
area of the hyperbolic triangle is π − α− β − γ.

I This should be compared with the formula π = α + β + γ in
Euclidean geometry as well as the formula for the area of the
spherical triangle α + β + γ − π.



11.2 Isometries of H

In Euclidean geometry two triangles are said to be congruent if one
triangle can be moved until it coincides with the other. The types
of motion that are allowed are combinations of rotations,
translations, and reflections, i.e. the isometries of the plane (see
Appendix 1). Similarly in Section 6.5 we found that the isometries
of the sphere were one, two, or three combinations of mirror
reflections over the great circles.



11.2 Isometries of H

It is easy to identify some isometries of H.
I The Translations: Ta(z) = z + a, a ∈ R.
I The Reflections: Ra(z) = 2a− z̄ .

I The Dilations: Da(z) = az , a > 0.

I The Inversion: I0,1(z) = 1
z̄ .



11.2 Isometries of H

I Proposition 11.2.1 : Any composite of a finite number of the
hyperbolic translations, reflections, dilations, and inversions
defined in the above slide is an isometry of H.

I In particular the inversion in a circle with center a ∈ R on the
real axis and radius r > 0 :

Ia,r (z) = a +
r2

z̄ − a

is an isometry of H.



11.2 Isometries of H

I Proposition 11.2.2 : The inversion Ia,r in the circle with the
center a ∈ R and radius r > 0 takes hyperbolic lines that
intersect the real axis perpendicularly at a to half-lines, and all
other hyperbolic lines to semicircles.

I Proposition 11.2.3 : Let l1 and l2 be hyperbolic lines and z1

and z2 points on l1 and l2 respectively. Then there is an
isometry of H that takes l1 to l2 and z1 to z2.

I Proposition 11.2.4 : In hyperbolic geometry similar triangles
are congruent.


