
7.2 The Gauss and Weingarten maps

Our second way to define the curvature of an oriented surface is to
consider its unit normal vector ~N. The way that ~N varies reflects
the way in which the surface curves: ~N varies rapidly near a point
at which the surface is highly curved and slowly where the surface
is slightly curved.



7.2 The Gauss and Weingarten maps

Describe if the following surfaces curve rapidly or slightly.

I EXAMPLE: The Euclidean plane (x , y , 0) in R3.

I EXAMPLE: The circle x2 + y2 + z2 = a2 in R3.

I EXAMPLE: The cylinder x2 + y2 = 1 in R3.



7.2 The Gauss and Weingarten maps

The Gauss map G is the map from the surface S to the unit sphere
S2 that assigns to any point p of S the point ~Np in S2. The rate at

which ~N varies across S is measured by the derivative of G :

DpG : TpS → TG(p)S
2.

The Weingarten map is defined as Wp,S = −DpG. (the minus sign
will make some future formulas simpler).



7.2 The Gauss and Weingarten maps

I EXAMPLE: Find the Weingarten map of the Euclidean plane
(x , y , 0) in R3.

I EXAMPLE: Find the Weingarten map of the circle
x2 + y2 + z2 = a2 in R3.

I EXAMPLE: Find the Weingarten map of the cylinder
x2 + y2 = 1 in R3.



7.2 The Gauss and Weingarten maps

Proposition 7.2.2 The second fundamental form is related to the
Weingarten map as follows:

Ldu(~v)du(~w)+Mdu(~v)dv(~w)+Mdu(~w)dv(~v)+Ndv(~v)dv(~w) = 〈〈v ,w〉〉

when 〈〈v ,w〉〉 = 〈Wp,S(v),w〉.



7.3 Normal and geodesic curvatures

It is obvious that the shape of a surface influences the curvature of
curves on the surface. For example, a curve on the plane or on the
cylinder can have zero curvature everywhere, but this is not
possible for curves on a sphere since no segment of a straight line
can lie on a sphere. Thus, a natural way to investigate how much a
surface curves is to look at the curvature of curves on the surface.



7.3 Normal and geodesic curvatures

If γ′(t) is a unit speed curve on S, then γ′(t) is perpendicular to
the normal ~N of S, so γ′, ~N, and ~N × γ′(t) are mutually
perpendicular unit vectors. Moreover, since γ is unit-speed, γ′′(t)
is perpendicular to γ′(t), and hence is a linear combination of ~N
and ~N × γ′ :

γ′′ = κn ~N + κg ~N × γ′.

The scalars κn and κg are called the normal curvature and the
geodesic curvature respectively.



7.3 Normal and geodesic curvatures

I Proposition 7.3.2 : κn = γ′′ · ~N = κ cosφ, κg =

γ′′ · ( ~N × γ′) = ±κ sinφ, κ2 = κ2n + κ2g when φ is the angle

between the normal to S ~N and the principal normal ~n of γ.

I Proposition 7.3.3 (most important): when γ = σ(u(t), v(t))

κn = Lu′2 + 2Mu′v ′ + Nv ′2 = 〈〈γ′, γ′〉〉.



7.3 Normal and geodesic curvatures

Proposition 7.3.3 reveals that the normal curvature does not
depend on the unit speed curve γ only on its direction γ′ in TpS .
Understanding that the normal curvature only depends on
direction, we can use Proposition 7.3.2 together with normal
sections to approximate the normal curvature at a point p ∈ S .

I Use normal sections to find the maximum and minimum
normal curvatures of the sphere x2 + y2 + z2 = a2 and then
of the cylinder x2 + y2 = a2.



9 Geodesics

Geodesics are the curves in a surface that a bug living in the
surface would perceive to be straight. Curvature κ for curves in
the plane as studied in section 2.2 is a special case of geodesic
curvature for curves on a surface. When suitably parametrized,
curves on a surface with zero geodesic curvature are called
geodesics. They are the analogs of straight lines in the plane.



9 Geodesics

If we drive along a ”straight” road we do not have to turn the
wheel of our car to the right or left (this is what we mean by
”straight”). However the road is not a straight line as the surface
of the earth is nearly spherical. If the road is represented by a
curve γ(t), its acceleration, γ′′, will be nonzero, but we perceive
the curve as being straight because the tangential component of
γ′′ is zero, in other words γ′′ is perpendicular to the surface—such
curves are important to our studies and are called geodesics.



9 Geodesics

In modern geometry then we have a new concept of a line: A line
is a curve γ on a surface S with zero tangential acceleration, which
means it has no recognizable acceleration to being living on the
surface. This is how we defined a line in the Euclidean plane after
we learned calculus. Before we learned calculus, one way to
identify a line between two points P and Q was to say that the line
is the shortest path (= curve) between the points. It turns out
that in the modern geometry we will study that these two ideas are
the same: Shortest paths between points and zero tangential
acceleration are the same.



9.1 Definition and basic properties

I Recall the decomposition of γ′′ into parallel and perpendicular
parts

γ′′ = κn ~N + κg ~N × γ′

when γ is on the surface S and is parametrized by arclength.

I EXAMPLE: lines γ(x) = (x ,mx + b) in the plane.

I EXAMPLE: γ(t) = (cos u0 cos t, cos u0 sin t, sin u0) on the unit
sphere.

I EXAMPLE: helix γ(t) = (cos t, sin t, at + b) on the cylinder
x2 + y2 = 1.



9.1 Definition and basic properties

I Proposition 9.1.2 : Any geodesic is constant speed.

I Proposition 9.1.3 A unit-speed curve on a surface is a geodesic
if and only if its geodesic curvature is zero everywhere

I Proposition 9.1.4 : Any part of a straight line on a surface is a
geodesic.

I Proposition 9.1.5 : Straight lines in Euclidean plane are
geodesics.



9.1 Definition and basic properties

I Proposition 9.1.6 : Any normal section of a surface is a
geodesic.

I This proposition can be used to show that the meridians on a
surface of revolution are geodesics. In particular the great
circles on a sphere are geodesics.



9.1 Definition and basic properties

Use the decomposition

γ′′ = κn ~N + κg ~N × γ′.

to show that the great circles of the sphere are geodesics.



9.2 Geodesic Equations

Theorem 9.2.1 : A curve γ on a surface S is a geodesic iff for any
part γ(t) = σ(u(t), v(t)) of γ satisfies the following two second
order nonlinear ODE:

I u′′E + 1
2u

′2Eu + u′v ′Ev + v ′′F + (v)′2
(
Fv − 1

2Gu

)
= 0.

I v ′′G + 1
2v

′2Gv + u′v ′Gu + u′′F + (u′)2
(
Fu − 1

2Ev

)
= 0.



9.2 Geodesic Equations

Theorem 9.2.1 : (PROOF) these are the same differential equations
as in our textbook but written in a slightly different form.

I We have γ′ = u′σu + v ′σv
I and then

γ′′ = u′′σu + u′(u′σuu + v ′σuv ) + v ′′σv + v ′(u′σuv + v ′σvv )

by the chain rule.

I Now the two ODEs arrive by knowing that γ′′ must be
perpendicular to σu and σv , i.e. the ODEs are γ′′ · σu = 0 and
γ′′ · σv = 0.



9.2 Geodesic Equations

The two geodesic equations, like most nonlinear differential
equations, are usually difficult or impossible to solve explicitly.
However the existence and uniqueness theorem proves there are
many solutions of such systems of nonlinear ODE.

I Existence and Uniqueness Theorem for ODE: there is a unique
geodesic through any given point of a surface in any given
tangent direction.

I The proof of the existence theorem is theoretical. It belongs
in an ODE course, but is usually avoided in an undergraduate
ODE course.

I The geodesic equations allow us to study geodesics in a patch.
We can then use σ to map these plane curves to the surface S.



9.2 Geodesic Equations

EXAMPLE: There is one case in which the geodesic equations are
simple to solve: in our favorite surface the Euclidean plane the
geodesics are lines. The geodesics in an arbitrary surface S are the
analogs of straight lines in the plane. We are studying modern
geomtery by following the implications of the geometry determined
on the surface S when the ”lines” are geodesics. We have already
discussed the strange implications of spherical geometry when the
”lines” are great circles.


