
6.5 Spherical geometry

If we are to develop spherical geometry by analogy with Euclidean
plane geometry, the first thing we need to do is to decide what
should be the analogs of the straight lines. Now straight lines in
the plane are the shortest curves joining any two of its points, so it
is natural to ask what the corresponding shortest curves are on the
sphere? We are going to see that these shortest curves are arcs of
great circles.



6.5 Spherical geometry

If p and q are distinct points on S2 there is always at least one
great circle passing through them. If p and q are not antipodal
points, i.e. p 6= −q the plane passing through the origin and
perpendicular to p ×−q intersects S2 in a great circle passing
through p and q.



6.5 Spherical geometry

Proposition 6.5.1 : Let p and q be distinct points on S2. If p 6= −q
then the shortest great circle arc joining p and q is the unique
shortest length joining p and q. If p = −q, any great semicircle
joining p and q is a shortest curve joining these two points.



6.5 Spherical geometry

Thus the great circles are the spherical analogues of straight lines
in the Euclidean plane. One immediate difference between spherical
and plane geometry is that there are no parallel lines in spherical
geometry, for any two great circles intersect (the two planes
containing the two great circles in a diameter of S2, the endpoints
of which are the points of intersection of the two great circles).



6.5 Spherical geometry

I The spherical distance dS2(p, q) between two points p and q
on the unit sphere is given by

cos dS2(p, q) = p · q.

I Proposition 6.5.3 :
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.



6.5 Spherical geometry

The two parts of Proposition 6.5.3 are called, respectively, the
”cosine rule” and ”sine rule” for spherical triangles. You can see
this by substituting the Taylor approximations cosA = 1− 1

2A
2

and sinA = A, etc. into the respective formulas. You will arrive at
the ”Law of cosines” and the ”Law of sines” respectively for
Euclidean geometry.



6.5 Spherical geometry

Corollary 6.5.6 :

cosA =
cosα + cosβ cos γ

sinβ sin γ
.

This formula is important because it shows that the sides of a
spherical triangle are determined by its angles, unlike the situation
in plane geometry in which there are similar triangles with the
same angles but possibly different sizes.



6.5 Spherical geometry

Much of Euclidean geometry is concerned with the question of
when two geometrical figures (such as triangles) are congruent,
which means that one figure can be ”moved” so that it coincides
with the other. The type of motions that are allowed are those
that do not change the size or shape of the triangles, namely the
isometries of the plane. We need to determine the isometries of
the sphere.



6.5 Spherical geometry

Proposition 6.5.7 : Every isomoetry of S2 is a composite of
reflections in planes passing through the origin. In fact, at most
three reflections are needed.



7 Curvature of sufaces

We discuss several approaches to the problem of measuring how
”curved” a surface is in this chapter. Each approach leads to the
same geometric object: the second fundamental form. It turns out
that a surface is determined up to isometry of R3 by its first and
second fundamental forms, just as a plane curve is determined up
to isometry of R2 by its signed curvature.



7.1 The second fundamental form

As the parameters (u, v) of the patch σ change to
(u + ∆u, v + ∆v) the surface moves away from the tangent plane
at σ(u, v) by the distance

(σ(u + ∆u, v + ∆v)− σ(u, v)) · ~N.

Using the Taylor theorem we compute

(σ(u+∆u, v +∆v)−σ(u, v)) · ~N = L(∆u)2+2M∆u∆v +N(∆v)2.

when L = σuu · ~N,M = σuv · ~N, and N = σvv · ~N.



7.1 The second fundamental form

I EXAMPLE: Find the first and second fundamental forms of
the Euclidean plane (x , y , 0) in R3.

I EXAMPLE: Find the first and second fundamental forms of
the circle x2 + y2 + z2 = a2 in R3.

I EXAMPLE: Find the first and second fundamental forms of
the cylinder x2 + y2 = 1 in R3.



7.2 The Gauss and Weingarten maps

Our second way to define the curvature of an oriented surface is to
consider its unit normal vector ~N. The way that ~N varies reflects
the way in which the surface curves: ~N varies rapidly near a point
at which the surface is highly curved and slowly where the surface
is slightly curved.



7.2 The Gauss and Weingarten maps

Describe if the following surfaces curve rapidly or slightly.

I EXAMPLE: Find the first and second fundamental forms of
the Euclidean plane (x , y , 0) in R3.

I EXAMPLE: Find the first and second fundamental forms of
the circle x2 + y2 + z2 = a2 in R3.

I EXAMPLE: Find the first and second fundamental forms of
the cylinder x2 + y2 = 1 in R3.



7.2 The Gauss and Weingarten maps

I EXAMPLE: Find the Weingarten map of Euclidean plane
(x , y , 0) in R3.

I EXAMPLE: Find the Weingarten map of the circle
x2 + y2 + z2 = a2 in R3.

I EXAMPLE: Find the Weingarten map of the cylinder
x2 + y2 = 1 in R3.



7.2 The Gauss and Weingarten maps

The Gauss map G is the map from the surface S to the unit sphere
S2 that assigns to any point p of S the point ~Np in S2. The rate at

which ~N varies across S is measured by the derivative of G :

DpG : TpS → TG(p)S
2.

The Weingarten map is defined as Wp,S = −DpG. (the minus sign
will make some future formulas simpler).



7.2 The Gauss and Weingarten maps

Proposition 7.2.2 The second fundamental form is related to the
Weingarten map as follows:

Ldu(~v)du(~w)+Mdu(~v)dv(~w)+Mdu(~w)dv(~v)+Ndv(~v)dv(~w) = 〈〈v ,w〉〉

when 〈〈v ,w〉〉 = 〈Wp,S(v),w〉.



2.6 Inscribed and circumscribed polygons

Definitions 135 :

I If all the vertices of a polygon lie on a circle then polygon is
inscribed into the circle, and the circle is said to circumscribe
the polygon.

I If all the sides of a polygon are tangent to a circle then
polygon in circumscribed about the circle and the circle is
then inscribed into the polygon.



2.6 Inscribed and circumscribed polygons

Theorem 136 :

I About any triangle a circle can be circumscribed and this
circle is unique.

I Into any triangle a circle can be inscribed.



2.7 Four concurrency points in a triangle

140 :

I The three perpendicular bisectors to the sides of a triangle
intersect at one point (which is the center of the
circumscribed circle).

I The three bisectors of the angles of a triangle intersect at one
point (which is the center of the inscribed circle)



2.7 Four concurrency points in a triangle

I Theorem 142 : The three medians of a triangle intersect at
one point; this point cuts a third part of each median
measured from the corresponding side.

I It is known from physics that the intersection point of the
medians of a triangle is the center of mass (also called the
barycenter). It always lies inside the triangle.


