6.3 Conformal mappings of surfaces

Now that we know how to measure lengths of curves on surfaces, it is natural to ask about angles. Suppose two curves γ and $\bar{\gamma}$ on S intersect at the point p . The angle of intersection θ is defined to be

$$
\cos \theta=\frac{\gamma^{\prime} \cdot \bar{\gamma}^{\prime}}{\left\|\gamma^{\prime}\right\|\left\|\bar{\gamma}^{\prime}\right\|}
$$

6.3 Conformal mappings of surfaces

Find the angle of intersection of the parameter curves $\gamma(t)=\sigma\left(t, v_{0}\right)$ and $\bar{\gamma}(t)=\sigma\left(u_{0}, t\right)$ at the point $\sigma\left(u_{0}, v_{0}\right)$.

6.3 Conformal mappings of surfaces

A conformal map of surfaces $f: S_{1} \rightarrow S_{2}$ is a local diffeomorphism such that if γ_{1} and $\overline{\gamma_{1}}$ are any two curves in S_{1} that intersect at $p \in S$ in θ then γ_{2} and $\overline{\gamma_{2}}$, their images under f, intersect at $f(p)$ in θ.
In short, f is conformal if it preserves angles. This is similar to isometries. f is an isometry if f preserves lengths.

6.3 Conformal mappings of surfaces

A local diffeomorphism $f: S_{1} \rightarrow S_{2}$ is conformal if and only if

- (Theorem: 6.3.3 :) There is a function λ on S_{1} so that

$$
f^{*}\langle v, w\rangle_{p}=\lambda(p)\langle v, w\rangle_{p} .
$$

- (Corollary 6.3.4) The first fundamental forms of the patches σ of S_{1} and $f \circ \sigma$ of S_{2} are proportional.

6.3 Conformal mappings of surfaces

- Is our favorite map $f(\theta, \phi)=(\cos \theta \cos \phi, \cos \theta \sin \phi, \sin \theta)$ a conformal map from S_{1} the Euclidean plane to the sphere S_{2} ? Is it an isomtery?
- Is our second favorite map $f(\theta, z)=(\cos \theta, \sin \theta, z)$ from S_{1} the Euclidean plane to S_{2} the cylinder $x^{2}+y^{2}=1$ conformal? Is it an isometry?
- Is the map $f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$ a conformal map from S_{1} the Euclidean plane (without $(0,0)$) to itself S_{2} ? Is it an isomtery?

6.3 Conformal mappings of surfaces

- Is our favorite map $f(\theta, \phi)=(\cos \theta \cos \phi, \cos \theta \sin \phi, \sin \theta)$ a conformal map from S_{1} the Euclidean plane to the sphere S_{2} ? Is it an isomtery?
- Is our second favorite map $f(\theta, z)=(\cos \theta, \sin \theta, z)$ from S_{1} the Euclidean plane to S_{2} the cylinder $x^{2}+y^{2}=1$ conformal? Is it an isometry?
- Is the map $f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$ a conformal map from S_{1} the Euclidean plane (without $(0,0)$) to itself S_{2} ? Is it an isomtery?

Chapter 2: The Circle

- Theorem 104 : Through any three points not lying on the same line, it is possible to draw a circle, and such a circle is unique.
- Theorem 105 : The diameter perpendicular to a chord, bisects the chord.
- Theorem 110: (Converse Theorems) Congruent chords are equidistant from the center and subtend congruent arcs. Chords equidistant from the center are congruent. Among two non-congruent chords, the one closer to the center is longer.

Chapter 2: The Circle

We see therefore that out of the three possible cases of disposition of a line and a circle, tangency only takes place in the third case, i.e. when the perpendicular to the line dropped from the center is a radius, and in this case the tangency point is the endpoint of the radius lying on the circle.

Chapter 2: The Circle

- Theorem 113 : If a line is perpendicular to the radius at its endpoint lying on the circle, then the line is tangent to the circle. And (vice versa) if a line is tangent to a circle, then the radius drawn to the tangency point is perpendicular to the line.
- Problem 114 : Construct a tangent to a given circle such that it is parallel to the a given line. the chord.

