I. Week of April 14 Sheet

1. (Kiselev): 250, 251, 258, 259, 265, 266, 268, 269.
2. (Pressley): 6.3.4, 6.3.7, 6.4.1-6.4.5.
II. Week of April 21 Sheet
3. Read pages $88-97$ from Courant's "What is Mathematics" text (free link our webpage) in order to review complex numbers from high school. Do the exercises $1-8$ on p. 97 .
4. For this problem we identify the complex plane \mathbb{C} with the xy-plane in \mathbb{R}.
(a) Show that the first fundamental form $I=d x^{2}+d y^{2}$ on the xy-plane becomes $I=d z d \bar{z}$ in \mathbb{C} when $d z=d x+i d y$ and $d \bar{z}=d x-i d y$.
(b) Since the isometries of the plane are compositions of rotations, translations and reflections in the plane, show that all isometries of \mathbb{C} with the above first fundamental form are of the form $f(z)=$ $a z+b$ or $f(z)=a \bar{z}+b$ when $\|a\|=1$.
(c) Since the conformal maps of the plane are compositions of rotations, translations, reflections, and dilations in the plane, show that all corresponding isometries of \mathbb{C} with the above first fundamental form are of the form $f(z)=a z+b$ or $f(z)=a \bar{z}+b$.
(d) Show that the conformal factor in conformal maps $f(z)=a z+b$ or $f(z)=a \bar{z}+b$ are $\lambda=\|a\|$.
5. (Kiselev): 278, 305, 320, 321.
6. (Pressley): 6.5.1, 6.5.2, 7.1.1, 7.1.2, 7.2.1.
