- I. Week of April 14 Sheet
- 1. (Kiselev): 250, 251, 258, 259, 265, 266, 268, 269.
- 2. (Pressley): 6.3.4, 6.3.7, 6.4.1 6.4.5.
 - II. Week of April 21 Sheet
- 1. Read pages 88 97 from Courant's "What is Mathematics" text (free link our webpage) in order to review complex numbers from high school. Do the exercises 1 8 on p. 97.
- 2. For this problem we identify the complex plane \mathbb{C} with the xy-plane in \mathbb{R} .
 - (a) Show that the first fundamental form $I = dx^2 + dy^2$ on the xy-plane becomes $I = dz d\bar{z}$ in \mathbb{C} when dz = dx + idy and $d\bar{z} = dx idy$.
 - (b) Since the isometries of the plane are compositions of rotations, translations and reflections in the plane, show that all isometries of \mathbb{C} with the above first fundamental form are of the form f(z) = az + b or $f(z) = a\bar{z} + b$ when ||a|| = 1.
 - (c) Since the conformal maps of the plane are compositions of rotations, translations, reflections, and dilations in the plane, show that all corresponding isometries of \mathbb{C} with the above first fundamental form are of the form f(z) = az + b or $f(z) = a\bar{z} + b$.
 - (d) Show that the conformal factor in conformal maps f(z) = az + b or $f(z) = a\overline{z} + b$ are $\lambda = ||a||$.
- 3. (Kiselev): 278, 305, 320, 321.
- 4. (Pressley): 6.5.1, 6.5.2, 7.1.1, 7.1.2, 7.2.1.