1. Compute E, F, and G for the sphere of radius a paramtrized by

$$
\sigma(u, v)=a(\cos u \cos v, \cos u \sin v, \sin u)
$$

2. Let f be the map $f: S_{1} \rightarrow S_{2}$ between the uv-pane, $S_{1}: z=0$, and the cylinder, $S_{2}: x^{2}+y^{2}=1$, given by

$$
f(u, v)=(\cos u, \sin u, v) .
$$

Compute $D f_{p}(w)$ when $p=\left(\frac{\pi}{4},-2\right)$ and $w=-\vec{i}+3 \vec{j}$.
3. Let $\sigma(u, v)$ be a patch of the surface S with first fundamental form

$$
E=1+4 u^{2}, F=-4 u v, G=1+4 v^{2}
$$

and let $\gamma(t)=\sigma(u(t), v(t))$ with $u(t)=t, v(t)=t$, and $-1 \leq t \leq 1$. Find the length of γ.
4. Assume that $\sigma(u, v)=\left(u, v, u^{2}+v^{3}\right)$ is a patch of a surface S.
(a) Is there a point on S at which the tangent plane to S is perpendicular to $(-1,1,0)$? Explain.
(b) Show that $p=(2,-1,3) \in S$.
(c) Using p in part (b) show that $w=(1,-1,1)$ is in $T_{p} S$.
(d) Using the above p and w find a vector v in $T_{p} S$ that is perpendicular to w .
5. (Kiselev): 178, 179, 180, 197, 200, 201.
6. (Pressley): 6.1.1, 6.1.2, 6.1.3, 6.2.1, 6.2.2.

