1. Given the system of equations

$$
\begin{aligned}
3 x_{1}+x_{2}-x_{3} & =3 \\
x_{1}-4 x_{2}+2 x_{3} & =-1 \\
-2 x_{1}-x_{2}+5 x_{3} & =2
\end{aligned}
$$

(a) Jacobi: $\vec{x}_{0}=(0,0,0), \vec{x}_{1}=(1, .25, .4), \ldots, \vec{x}_{7}=(1.00038,1.00122, .99985)$. Converges to $(1,1,1)$ which is indeed the solution.
(b) Gauss-Seidel: $\vec{x}_{0}=(0,0,0), \vec{x}_{1}=(1,0.5,0.9), \ldots, \vec{x}_{7}=(1.00015, .99997,1.00005)$.
(c) SOR: $\vec{x}_{0}=(0,0,0), \vec{x}_{4}=(1.01776,1.01520,1.01154)$.
2. Given the system of equations

$$
\begin{aligned}
3 x_{1}+x_{2}-x_{3} & =3 \\
x_{1}-4 x_{2}+2 x_{3} & =-1 \\
-2 x_{1}-x_{2}+5 x_{3} & =2
\end{aligned}
$$

(a) Here is yet another FPI $x=g(x)=(I-A) x+b$.
(b) Verify that a fixed point of this FPI is a solution to $A x=b$. Solve for $A x$ in $x=x-A x+b$. You'll get $A x=b$.
(c) Find $\vec{x}_{1}=(3,-1,2)$ and vecx $x_{7}=(6069,-40300,-5665)$ when $\vec{x}_{0}=(0,0,0)$.
(d) What is happening with this FPI sequence? ANSWER: diverging.

