1. (a) $x_{1}=\left(1,1,0\right.$ and $x_{2}=(0,1,2)$ are independent vectors that are perpendicular to $a=(2,-2,1)$.
(b) The angle between $a=(2,-2,1)$, and $b=(1,2,2)$ is $\pm \frac{\pi}{2}$.
(c) $(0,0,0)$ is the projection of $b=(1,2,2)$ onto span $a=(2,-2,1)$ ?
(d) $\frac{8}{9} a$ is the projection of $b=(1,-2,2)$ onto span $a=(2,-2,1) ? \hat{r}=b-P b=\frac{1}{9}(-7,-2,10)$.
(e) $(1,1,0)$ is the projection of $b=(1,1,1)$ onto the plane spanned by $(1,0,0)$ and $(1,1,0) \cdot \hat{r}=b-P b=$ $(0,0,1)$.
2. Geometry of matrix multiplication as a linear transformation.
(a) Given $b=(1,2,2)$ and $a=(1,1,1)$. Then $A \hat{x}=P b=\frac{1}{3}(5,5,5), \hat{r}=b-P b=\frac{1}{3}(-2,1,1)$.
(b) Find the best least squares solution $\hat{x}=2$ to $3 x=10,4 x=5$. How is the residual minimized? The $2-$ norm of the residual is minimized. The residual $\hat{r}=b-A \hat{x}=(4,-3)$ is perpendicular to the column of $A$. Check with dot product.
(c) Solve $A x=b$ by least squares when $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 1\end{array}\right], b=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] . \hat{x}=\frac{1}{3}(1,1)$ and $\hat{r}=b-A \hat{x}=\frac{1}{3}(2,2,-2)$ is perpendicular to the columns of A .
3. Geometry of matrix multiplication as a linear transformation.
(a) Project the vector $b=(1,1,8)$ onto the columns of $A=\left[\begin{array}{cc}1 & 1 \\ 0 & 1 \\ 1 & -1\end{array}\right] . P b=\frac{1}{2}(3,-6,15)$ and $\hat{r}=$ $b-P b=\frac{1}{2}(-1,8,1)$ is perpendicular to the columns of A.
(b) Find the projection matrix $P=A\left(A^{T} A\right)^{-1} A^{T}=\frac{1}{2}\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & 1 & -1 \\ 0 & -1 & 2\end{array}\right]$
(c) Redo the first question on this page using the projection matrix P. Compute $P b$ by matrix multiplication.
4. (a) Find the least squares solution to $\mathrm{Ax}=\mathrm{b}$ when $A=\left[\begin{array}{cc}6 & 9 \\ 3 & 8 \\ 2 & 10\end{array}\right], b=\left[\begin{array}{c}0 \\ 49 \\ 0\end{array}\right]$. Then determine the $2-$ norm of the residual. ANSWER $\hat{x}=(-1,2)$ and $\|\hat{r}\|_{2}=42$.
(b) Fit a linear function of the form $f(t)=b+m t$ to the data points $(0,3),(1,3)$, and $(1,6)$. ANSWER: $3+1.5 t$.
5. Use Householder reflectors to find the QR factorization of the following matrices.
(a) $\mathrm{i} 2-\mathrm{i} A=\left[\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right]=\left[\begin{array}{cc}0.6 & 0.8 \\ 0.8 & -0.6\end{array}\right]\left[\begin{array}{cc}5 & 3 \\ & -1\end{array}\right]=Q R$
(b) $\ddagger 3-\mathrm{i} A=\left[\begin{array}{cc}1 & -4 \\ 2 & 3 \\ 2 & 2\end{array}\right]=\frac{1}{3}\left[\begin{array}{cc}1 & 2 \\ 2 & 1 \\ 2 & -2\end{array}\right]\left[\begin{array}{cc}3 & 2 \\ & -3\end{array}\right]$.
