1. Find the LU factorization of the following matrices A.
(a) $A=L U=\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & -\frac{7}{3} & 1\end{array}\right]\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & -3 & 0 \\ 0 & 0 & -2\end{array}\right]$.
(b) $A=L U=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 0 & -7\end{array}\right]$.
2. Use the previous LU factorization of the matrices A to solve the systems below. No credit will be given for any other method.
(a) $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]$.
(b) $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
3. for i in range $(1,100)$:

$$
\begin{aligned}
& \mathrm{L}[\mathrm{i}, 0]=(\mathrm{A}[\mathrm{i}, 0] / \mathrm{A}[0,0]) \\
& \mathrm{A}[\mathrm{i},:]=\mathrm{A}[\mathrm{i},:]-\mathrm{L}[\mathrm{i}, 0] * \mathrm{~A}[0,:]
\end{aligned}
$$

4. Use $P A=L U$ factorization to solve the following systems. No credit will be given for any other method.
(a) $(x, y, z)=(-1,1,1)$
(b) $\left(x_{1}, x_{2}\right)=(-2,1)$
5. (a) $A=\left[\begin{array}{ccc}2 & 1 & 5 \\ 4 & 4 & -4 \\ 1 & 3 & 1\end{array}\right], P=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right], L=\left[\begin{array}{ccc}1 & 0 & 0 \\ .25 & 1 & 0 \\ .5 & -5 & 0\end{array}\right]$, and $U=\left[\begin{array}{ccc}4 & 4 & -4 \\ 0 & 2 & 2 \\ 0 & 0 & 0\end{array}\right]$.
(b) Solve $A x=b=\left[\begin{array}{l}5 \\ 0 \\ 6\end{array}\right]$ using the above $P A=L U$ factorization. $(c=(0,6,8), x=(-1,2,1)$.
6. It is easy to "see" whether a 2×2 matrix is symmetric, i.e. if $A^{T}=A$. In order to determine if it is positive definite you can verify that its eigenvalues are all positive.
7. (a) $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 8\end{array}\right], G=\left[\begin{array}{ll}1 & 0 \\ 2 & 2\end{array}\right]$
(b) $A=\left[\begin{array}{cc}25 & 5 \\ 5 & 26\end{array}\right], G=\left[\begin{array}{cc}5 & 0 \\ 1 & 5\end{array}\right]$
8. $c_{1}=4, c_{2}=-3$ and $x_{1}=7, x_{2}=-\frac{3}{2}$.
9. Find the Cholesky factorization, $A=G G^{T}$, of each of the following symmetric, positive definite matrices using $G=L D^{\frac{1}{2}}$. ANSWER: $G=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 2\end{array}\right]$
10. Given $A=\left[\begin{array}{cc}1 & 1 \\ 1 & 1.0001\end{array}\right]$ and $B=\left[\begin{array}{cc}.0001 & 1 \\ 1 & 1\end{array}\right]$.
(a) Of course all such "rough" answers are subjective to the problem at hand. However, matrix A looks nearly singular because its rows are almost parallel. Matrix B does not suffer from being close to singular by computing its determinant is not close to zero.
(b) $\kappa_{2}(A) \approx 40002$ and $\kappa_{2}(B) \approx 2.6184$
11. Find the norms $\|A\|_{2}=\lambda_{1}$ and the condition numbers $\kappa(A)=\frac{\lambda_{1}}{\lambda_{2}}$ of the following positive definite matrices (by hand):
(a) $\|A\|_{2}=100, \kappa(A)=50$.
(b) $\|A\|_{2}=3, \kappa(A)=3$.
(c) $\|A\|_{2}=2+\sqrt{2}, \kappa(A)=\frac{2+\sqrt{2}}{2-\sqrt{2}}$.
12. Find the norms $\|A\|_{2}$ and the condition numbers $\kappa(A)$ of the following positive definite matrices (by hand) from $\sqrt{\lambda_{1}\left(A^{T} A\right)}$ and $\sqrt{\lambda_{n}\left(A^{T} A\right)}$:
(a) $\|A\|_{2}=2, \kappa(A)=1$.
(b) $\|A\|_{2}=\sqrt{2}, \kappa(A)=\infty$.
(c) $\|A\|_{2}=\sqrt{2}, \kappa(A)=1$.
13. Given the ill-conditioned matrix $A=\left[\begin{array}{cc}1 & 1 \\ 1 & 1.0001\end{array}\right]$.
(a) $b=\left[\begin{array}{l}2 \\ 2\end{array}\right](x=(2,0))$
(b) $b=\left[\begin{array}{c}2 \\ 2.0001\end{array}\right] \cdot(x=(1,1))$
(c) You should see that the solutions, x, to this ill-conditioned problem are very sensitive to small changes in the input b. There is no robust algorithm.
14. Even well conditioned problems can give errors. Given $B=\left[\begin{array}{cc}.0001 & 1 \\ 1 & 1\end{array}\right]$.
(a) $x_{1}=0, x_{2}=1$ with three digit rounding and without pivoting because

$$
\begin{aligned}
.0001 x_{1}+x_{2} & =1 \\
-9999 x_{2} & =-9998
\end{aligned}
$$

(b) $x_{1}=1, x_{2}=1$ with three digit rounding and with pivoting because

$$
\begin{aligned}
& x_{1}+x_{2}=2 \\
& .9999 x_{2}=.9998
\end{aligned}
$$

(c) The actual answer with eight digit rounding is $\left(x_{1}, x_{2}\right)=(1.00010001,0.99989999)$.
15. The system $\left[\begin{array}{cc}1 & 2 \\ 1.0001 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}3 \\ 3.0001\end{array}\right]$ has one solution $x=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Suppose $\hat{x}=\left[\begin{array}{c}3 \\ -0.0001\end{array}\right]$ is the approximate solution after running some algorithm.
(a) $\hat{r}=\left[\begin{array}{c}0.0002 \\ 0\end{array}\right]$, and $\|\hat{r}\|_{\infty}=.0002=\|\hat{r}\|_{2}$.
(b) $\frac{\|\hat{r}\|_{2}}{\|b\|_{2}} \approx .0000471$.
(c) $\frac{\|x-\hat{x}\|_{2}}{\|x\|_{2}} \approx 1.58$.
(d) $\frac{\|x-\hat{x}\|}{\|x\|} \approx 1.58 \leq 5001 * .0000471 \approx \kappa(A) \frac{\|\hat{r}\|}{\|b\| \|}$.

