1. Run the code from the "Computational Physics" webpage or use my code on our coursepage.
2. (a) Use Euler's method with $h=0.2$ to approximate $x(2)$ and then find the error by comparing with the exact solution $x(2)$. Repeat with $h=0.02$. How do the errors compare with your understanding of the saying, "halve the stepsize, halve the error." If $h=0.2$ then error $=0.4396874$ and if $h=0.02$ then error $=0.0526879$.
(b) Use RK2 (= explicit trapezoid p.494.) method with $h=0.2$ to approximate $x(2)$ and then find the error by comparing with the exact solution $x(2)$. Repeat with $h=0.02$. How do the errors compare with your understanding of the saying, "halve the stepsize, quarter the error." If $h=0.2$ then error $=0.07241732$ and if $h=0.02$ then error $=0.000779726$.
(c) Use RK4 method with $h=0.2$ to approximate $x(2)$ and then find the error by comparing with the exact solution $x(2)$. Repeat with $h=0.02$. How do the errors compare with your understanding of the saying, "halve the stepsize, $\frac{1}{16}$ th error." If $h=0.2$ then error $=0.0001089498$ and if $h=0.02$ then error $=1.13953229 e-08$.
3. (a) Calculate the left endpoint Riemann sum approximation using 40, 400, and 4000 equally-spaced subintervals. How many decimal places have stabilized? $40: 6.133338,400: 6.220269,4000$: 6.228990 .
(b) Approximate the integral using the trapezoid method with 40, 400, and 4000 equally-spaced subintervals. How many decimal places have stabilized? $40: 6.2302699,400: 6.22996249,4000$: 6.2299594 .
(c) Approximate the integral using Simpson's method with 40, 400, and 4000 equally-spaced subintervals. How many decimal places have stabilized? $40: 6.229959413978,400: 6.2299593878862,4000$: 6.2299593878837
4. (a) Approximate the solution to the IVP using RK2 (trapezoid method) with stepsize $h=\frac{3-1}{4000}$. How does this compare with your approximation of the integral in the previous problem? 6.229959418937354
(b) Approximate the solution to the IVP using RK4 with stepsize $h=\frac{3-1}{4000}$. How does this compare with your approximation of the integral in the previous problem? 6.2299593878837 MATLAB: 6.229959387883647
