- 1. Find the Lagrange polynomials $L_j(x)$ and data y_j to interpolate $f(x) = e^x$ at the x-values $x = 0, x = \frac{1}{2}$, and x = 1 by a quadratic polynomial p(x).
 - (a) $p(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x) = 1L_0(x) + e^{0.5} L_1(x) + eL_2(x).$

(b)
$$L_0(x) = \frac{(x-\frac{1}{2})(x-1)}{(0-\frac{1}{2})(0-1)}$$

(c) $L_1(x) = \frac{(x-0)(x-1)}{(\frac{1}{2}-0)(\frac{1}{2}-1)}$
(d) $L_2(x) = \frac{(x-0)(x-\frac{1}{2})}{(1-0)(1-\frac{1}{2})}$

- 2. You should be able to redo the previous exercise with two data points or four data points. Try it!
 - (a) Data points: (2,4), (5,1). Then p(x) = -x + 6 in all three methods.
 - (b) Data points: (-1,3), (0,-4), (1,5), (2,-6). Then $p(x) = -6x^3 + 8x^2 + 7x 4$.
 - (c) The problem above with four data points illustrates that on an exam there will never be more than four data points. It is too much computation.
- 3. Let p(x) be the interpolating polynomial of the data points (1, 10), (2, 10), (3, 10), (4, 10), (5, 10), and (6, 15). Evaluate p(7). ANSWER: p(7) = 40.
- 4. (a) Assume p(x) interpolates $f(x) = e^{-2x}$ at the 10 evenly spaced points $x = 0, \frac{1}{9}, \frac{2}{9}, \ldots, \frac{8}{9}, 1$. An upper bound for the error $|f(\frac{1}{2}) p(\frac{1}{2})| < 7.06 \times 10^{-11}$. How many decimal places can you guarantee to be correct if p(0.5) is used to approximate e? ANSWER: 9 places.
 - (b) Consider the interpolating polynomial for $f(x) = \frac{1}{x+5}$ with interpolation nodes x = 0, 2, 4, 6, 8, and 10. Find an upper bound for the interpolation error at x = 1 (ANSWER: $\frac{3 \cdot 5 \cdot 7 \cdot 9}{5^3}$) and then at x = 5 (ANSWER: $\frac{5^2 \cdot 3^2}{5^3}$). There are other acceptable answers.