1. Find the Lagrange polynomials $L_{j}(x)$ and data y_{j} to interpolate $f(x)=e^{x}$ at the x -values $x=0, x=\frac{1}{2}$, and $x=1$ by a quadratic polynomial $p(x)$.
(a) $p(x)=y_{0} L_{0}(x)+y_{1} L_{1}(x)+y_{2} L_{2}(x)=1 L_{0}(x)+e^{0.5} L_{1}(x)+e L_{2}(x)$.
(b) $L_{0}(x)=\frac{\left(x-\frac{1}{2}\right)(x-1)}{\left(0-\frac{1}{2}\right)(0-1)}$
(c) $L_{1}(x)=\frac{(x-0)(x-1)}{\left(\frac{1}{2}-0\right)\left(\frac{1}{2}-1\right)}$
(d) $L_{2}(x)=\frac{(x-0)\left(x-\frac{1}{2}\right)}{(1-0)\left(1-\frac{1}{2}\right)}$
2. You should be able to redo the previous exercise with two data points or four data points. Try it!
(a) Data points: $(2,4),(5,1)$. Then $p(x)=-x+6$ in all three methods.
(b) Data points: $(-1,3),(0,-4),(1,5),(2,-6)$. Then $p(x)=-6 x^{3}+8 x^{2}+7 x-4$.
(c) The problem above with four data points illustrates that on an exam there will never be more than four data points. It is too much computation.
3. Let $p(x)$ be the interpolating polynomial of the data points $(1,10),(2,10),(3,10),(4,10),(5,10)$, and $(6,15)$. Evaluate $p(7)$. ANSWER: $p(7)=40$.
4. (a) Assume $p(x)$ interpolates $f(x)=e^{-2 x}$ at the 10 evenly spaced points $x=0, \frac{1}{9}, \frac{2}{9}, \ldots, \frac{8}{9}, 1$. An upper bound for the error $\left|f\left(\frac{1}{2}\right)-p\left(\frac{1}{2}\right)\right|<7.06 \times 10^{-11}$. How many decimal places can you guarantee to be correct if $p(0.5)$ is used to approximate e ? ANSWER: 9 places.
(b) Consider the interpolating polynomial for $f(x)=\frac{1}{x+5}$ with interpolation nodes $x=0,2,4,6,8$, and 10. Find an upper bound for the interpolation error at $x=1$ (ANSWER: $\frac{3 \cdot 5 \cdot 7 \cdot 9}{5^{3}}$) and then at $x=5$ (ANSWER: $\frac{5^{2} \cdot 3^{2}}{5^{3}}$). There are other acceptable answers.
