1. $f(1.5) \cdot f(2)<0$ and f is continuous on $[1.5,2]$ so IVT applies.

2 . $6.08 \leq f(2.2) \leq 6.1$.
3. Increases on $(-1,1), \max =\frac{1}{2}, \min =-\frac{1}{2}$.
4. Find the maximum and minimum values of $f(x)=2 x^{3}-3 x^{2}-12 x+8$ on each of the following intervals,
(a) $[-2.5,4] \max 40, \min -12$
(b) $[-2,3] \max 15, \min -12$
5. $T_{2}(x)=1+x+x^{2}$ and $T_{3}(x)=1+x+x^{2}+x^{3}$
6. $\sin (3 x)=(3 x)-\frac{(3 x)^{3}}{3!}+\frac{(3 x)^{5}}{5!}+\ldots$
7. $\left|\sin x-T_{3}(x)\right| \leq \frac{x^{5}}{5!}$.
8. $c=1$
9. $P(3)=3(3(3(3+1)-13)-1)-12$
10. Find the relative and approximate error when w is used to approximate v.

1. $v=2.71828182, w=2.7182$ relative ≈ 0.0000301 and absolute ≈ 0.00008182.
2. $v=98350, w=98000$
3. $v=.0000068, w=.000006$
