- 1. $f(1.5) \cdot f(2) < 0$ and f is continuous on [1.5, 2] so IVT applies.
- 2. $6.08 \le f(2.2) \le 6.1$.
- 3. Increases on (-1, 1), max $= \frac{1}{2}$, min $= -\frac{1}{2}$.
- 4. Find the maximum and minimum values of $f(x) = 2x^3 3x^2 12x + 8$ on each of the following intervals,
 - (a) $[-2.5, 4] \max 40, \min -12$
 - (b) $[-2,3] \max 15, \min -12$
- 5. $T_2(x) = 1 + x + x^2$ and $T_3(x) = 1 + x + x^2 + x^3$
- 6. $\sin(3x) = (3x) \frac{(3x)^3}{3!} + \frac{(3x)^5}{5!} + \dots$
- 7. $|\sin x T_3(x)| \le \frac{x^5}{5!}$.
- 8. c = 1
- 9. P(3) = 3(3(3(3+1) 13) 1) 12
- 10. Find the relative and approximate error when w is used to approximate v.
 - 1. v = 2.71828182, w = 2.7182 relative ≈ 0.0000301 and absolute ≈ 0.00008182 .
 - 2. v = 98350, w = 98000
 - 3. v = .0000068, w = .000006