
NUMERICAL ANALYSIS NOTES

M. AUTH

1. Monday 28 January:

We will study, use, and analyze numerical algorithms to solve problems in al-
gebra, linear algebra, calculus, and differnetial equations. Most of the material,
besides some of the linear algebra, you will have already studied in your prior
math courses. In those courses you were mostly concerned with showing (proving)
that solutions to linear algebra, calculus, and differential equation problems have
solutions. You did not worry about how to compute or even approximate these
solutions. We will worry about these things in this class.

What we will see is that the techniques used to compute or approximate solutions
in this course is often wildly different from the methods you used to prove that the
solutions existed in previous math courses. One theme of the course that will appear
over and over: Linear algebra is central to numerical analysis. Many problems are
capable of being expressed in linear algebra terms and these expressions, although
difficult to appreciate, are often the easiest way to approximate solutions to the
problem numerically.

We covered Section 1.1 ”The Bisection Method”. We discussed how to bracket a
root using Theorem 1.2. You should be able to state a rough proof of this theorem,
i.e. you should at least be able to state the hypothesis and conclusion of this
theorem. You need not understand the bisection code on page 26 but you should
be able to generate the first three rows of the table on page 27 by hand.

Many problems we study in class will follow the template we use to study the
”Bisection Method”:

(1) Find an algorithm (think of a recipe to bake a cake) to generate a sequence
of numbers x0, x1, x2,

(2) Use scrap paper to implement the algorithm on a simple problem.
(3) Code the algorithm into a computer language of your choice.
(4) Study when the sequence converges limn→∞ xn = x.
(5) If the sequnence converges, determine how fast it converges.

The last step is most often the most challenging step, since we rarely know the
value of x. After this last step we will always test our new algorithm by using it
to approximate the solution to a simple problem that we already know the exact
answer. These examples can confuse students.

Our algorithms are designed to be used to approximate solutions to problems
that we cannot compute exactly. Yet, since this is a class, we always test out our
algorithms and error formulas on problems we already know how to compute exactly
from other math classes. This is the best way to learn the material. After we gain
confidence in the algorithm by working through a few of these baby examples, we
can safely try it on a problem that is unsolvable.

1

2 M. AUTH

You should understand the solution error formula = |xc − r| < b−a
2n+1 for the

bisection method and how to approximate a solution correct within p decimal places.
Here is the MATLAB bisection method code from our book:

% First attempt at bisection code

f=@(x) x^3 - x - 1;

a(1)=1; b(1)=2;

c(1) = (a(1)+b(1))/2;

for i = 1:13

if f(a(i))*f(c(i)) < 0

b(i+1) = c(i);

a(i+1) = a(i);

end

if f(c(i))*f(b(i)) < 0

a(i+1) = c(i);

b(i+1) = b(i);

end

c(i+1) = (a(i+1)+b(i+1))/2;

end

n=1:14;

[n’,a’,c’,b’]

In order to understand this code, you must understand how assignment is done
in computer laguages and how decisions are made in computer languages.

Here are some exercises to test your understanding of assignment. Try to work
out what matlab will do in each of the following three code parts before you plug
the code into your computer.

(1) a = 2;

b = 3;

a = b;

disp(a)

disp(b)

(2) a = 2;

b = 3;

b = a;

a

b

(3) a = 2;

b = 3;

a = a + b;

b = a + b;

disp([b,a])

In order to generate a sequence of approximations, you will also need to un-
derstand how loops work in matlab. Each loop through the code will generate a
new (”better”) approximation. Like always try to figure out what is going on in
the followin three loop by making a table on scrap paper before typing code into
computer.

NUMERICAL ANALYSIS NOTES 3

(1) a = 0;

b = 0;

for i = 1:5

a = a + 1;

b = a + b;

disp([a,b])

end

(2) a = 0;

b = 1;

for i = 1:5

a = a + b;

b = a + b;

disp([a,b])

end

(3) a = 0;

b = 1;

for k = 1:5

a = a + 1;

b = a + b;

end

disp([a,b])

Lastly you need to understand how to make decisions with matlab. Try to
determine what the following two code snipets produce before typing them into
matlab.

(1) a = 0;

b = 2;

if a>b

disp(a+10)

else

disp(a-13)

end

(2) a = 0;

b = 2;

for i = 1:3

if a>b

a = a - 1;

else

b = b - 2;

end

disp([a,b])

end

To further review matlab, you can work through the matlab tutorial on our
webpage.

2. Wednesday 30 January:

We studied the error formula en = |xn − r| < b−a
2n+1 for the Bisection method as

well as the definition that an approximation xn is correct within p decimal places if
en < 0.5× 10−p in section 1.1 ”The Bisection Method”. If the hypothesis are met,

4 M. AUTH

the Bisection Method always generates a sequence converging to a root. The error
formula tells us how fast the sequence converges. Please read the section and do
some of the assigned problems so that you become comfortable with approximations
and error.

We finished class by introducing a different algorithm, Fixed Point Iteration
(FPI). We use the FPI algorithm xi+1 = g(xi) to approximate fixed points r = g(r)
of the function g. If g is continuous and limxi = r then r is a fixed-point of g. We
use this fact repeatedly. Unfortunately, many FPI sequences diverege—even when
they start close to a fixed point. Please read this section and work through some
of the problems. I will explain theorem 1.6 and the cobweb diagrams next week.

We studied Section 1.2 ”Fixed-Point Iteration”. Here is the FPI Matlab code I
used in class to generate the first 19 elements in the FPI sequence. Please feel free
to play around and alter my code. You’ll learn a lot this way.

%FIXED_POINT Example 1.3 (p. 36) Fixed_Point Iteration

%Computes approximate solution to 0 = f(x) = cos(x) - sin(x)

% by finding a fixed point of x = g(x) = cos(x) - sin(x)

% We already know solution is pi/4.

g = @(x) x + cos(x) - sin(x);

x(1) = 0; % intial guess

for i=1:19 % 19 iterations as book example

x(i+1) = g(x(i)); % next approximation in the FPI sequence

end

x’ % display approximates in columns as in text.

In class we worked through some baby examples because the fixed-point could be
found be hand by using basic high school algebra. Yet these high school problems
are important and easy examples to practice your MATLAB code as well as your
ability to make a few rows of a table like the one on page 32 by hand. We found
that some fixed-point iterations converge and some are unstable. One good (but
imprecise) way to see this geometrically is to make a cobweb diagram. You must be
able to work with fixed point iterations in three ways: (1) by hand making tables
and using basic algebra, (2) using MATLAB, and (3) by making a cobweb diagram.

Most importantly you must understand how to use the following theorem.

Theorem 2.1. (theorem 1.6 from textbook) Assume that g is continuously differen-
tiable, that g(r) = r and that S = |g′(r)| < 1. Then Fixed-Point Iteration converges
linearly with rate S to the point r for initial guesses close to r.

After you understand the theorem work through many of the exercises and com-
puter problems I’ve assigned from the end of the section. Doing exercises is the
best way to learn the material (the answers to the odd problems are in the back of
the book). Use theorem 1.6 to determine if FPI converges to a given fixed (with
a close intial guess) and, if so, how fast it converges. We started to do this at the
end of class.

NUMERICAL ANALYSIS NOTES 5

3. Monday 4 January

Today we studied cobweb diagrams and used them to develop our intuition about
if an FPI sequence converges or diverges. When we are given an FPI sequence g(x)
and x0, it is helpful to think about it on many levels:

(1) Use basic algebra techniques from high school to solve r = g(r) to find fixed
points. (This only works for some baby problems that we do in class and
on tests to learn more about FPI. In reality we never find the fixed point
r; we use FPI to approximate it and that is the best we can do.)

(2) On scrap paper make a table to calculate a few x1, x2, x3, . . . by hand and
try to guess r for different initial guesses, x0

(3) On scrap paper make a cobweb diagram for different initial guesses x0,
when possible.

(4) Use our Matlab FPI code to view some FPI sequences. Play around with the
number of steps and the initial guess to view some different FPI sequences
for the same g(x).

After completing these steps, you can often understand the fixed points of g(x)
and the FPIs to converge to each fixed point given different initial guesses. Nev-
ertheless, this analysis is not perfect. Some initial guesses x0 give FPI sequences
that diverge. Theorem 1.6 indicates that only initial guesses ”sufficiently close” to
r (with |g′(r)| < 1) lead to convergent FPI sequences. Sufficiently close can be a
small interval or a large interval, depending on r and g(x). If we study a different
r or g(x) we have to redo the analysis in the above steps. There are no shortcuts.

What’s worse is that even if we complete the above steps (and we should), they
are only approximations. If we really want to know that an FPI converges, and
know how fast it converges, we need to prove it. This is a 300 level math course. You
are going to have to prove some things. Proving that FPI converges often requires
really understanding Theorem 1.6 and how the Mean Value Theorem of Calculus
is used in the theorem. After that you will need to find bounds (maximums and
minumuns) of |g′(x)|. You studied these things in your calculus course. It may be
time to review.

4. Wednesday 6 February

In linear Convergence, we have the approximation ei+1 ≤ |g′(r)|ei when r is a
fixed point of the continuously differentiable function g(x). It is a huge advantage
to arrange that S = |g′(r)| be small. For example if S = .9 then it takes about
22 iterates to stabilize a digit. While if S = .1 then it takes about 1 itenrates to
stabilize a digit. Bisection: S = 0.5, FPI: S ≈ g′(r). But FPI may only converge
locally, if at all?

Proving the Thereom 1.6 requires the Mean Value Theorem from calculus to
prove the following theorem. After you understand the theorem by working through
exercises and computer problems, please think a little about the proof.

5. Monday 11 February

Today we approximated a root of the equation ex + x = 7. We know that the
root r is between 1 and 2. In order to approximate it we turned this root equation
into two FPI’s g1(x) = 7− ex and g2(x) = ln(7− x). We could have also used the
Bisection method but we wanted faster convergence so we tried FPI. After plugging

6 M. AUTH

both g functions into matlab it was clear that g1 gave a divergent FPI sequence
while g2 coverged quickly. In order to find the S factor in the g2 FPI sequence we
could not just compute S = |g′2(r)| since we do not know r. This is normal. Instead
we had to use calculus to find a bound for g′2(c) for all c in the interval [1, 2]. These
arguments are typical. You should know them.

We discussed the theorem 1.11.

Theorem 5.1. (quadratic convergence theorem) Suppose that g ∈ C2, and r = g(r)
and g′(r) = 0. Then for all iterates xi sufficiently close to r, the errors ei = |xi− r|
satisfy the quadratic convergence estimate: ei+1 ≤Me2i for some constant M > 0.

You need not memorize the proof but here it is in any case.

Proof. Replace the MVT with first order Taylor expansion g(x) = g(r) + g′(r)(x−
r)+ 1

2g
′′(c)(x−r)2, where c is an unknown between x and r. This gives |g(x)−r| =

1
2 |g
′′(c)|x− r|2 ≤M |x− r|2. �

Theorem 5.2. (theorem 1.11 from text): f ∈ C2, f(r) = 0, f ′(r) 6= 0 then

Newton’s iteration g(x) = x− f(x)
f ′(x) converges at quadratic rate if x0 is sufficiently

close to r.

Proof. You need not memorize this proof but you should be able to use the quadratic
convergence theorem above to prove this yourself. �

At this point we could spend some time finding an interval and M, a bound of
g′′(x) on the interval. You will not be required to do this analysis of finding the
intervals and inequalities for M in this class. Instead, we will use Matlab code

% NEWTONS METHOD: is used to make the approximation from Example

% 1.11 (p. 52) in our textbook

clear

f = @(x) x^3 + x - 1; % function to find roots.

fPrime = @(x) 3*x^2 + 1; % derivative of function.

x(1) = -0.7; % initial guess

for i = 1:7

x(i+1) = x(i) - f(x(i))/fPrime(x(i));

end

x’ % displays approximates

When this converges, it will converge fast. You should see digits stabilize quickly.
Keep the following fact in mind: Say x0 has one decimal place accuracy.

• Linear Convergence (and S = .1) : It requires 49 iterations to obtain 50
decimal place accuracy.
• Quadratic Convergence (and M = 1) : It requires 6 iterations to obtain 64

decimal place accuracy.

6. Wednesday 13 February

In section 1.5 you only need to memorize the secant method. You need not know
any other method in 1.5. You should learn to use matlab’s fzero function. Please
read section 1.3.

NUMERICAL ANALYSIS NOTES 7

We covered 1.5 Root Finding Without Derivatives. It is only necessary to mem-
orize the Secant Method from this section. It is good to know how to use Matlab’s
built in function fzero to check your approximate root, even though we do not know
how fzero is implemented.

Here is the secant script I used in class

f=@(x) x^3 - 2*x - 2

x(1) = 1;

x(2) = 2;

for i =2:7

x(i+1) = x(i) - (f(x(i))*(x(i) - x(i-1))) / (f(x(i)) - f(x(i-1)));

end

x’

Brent’s Method is a hybrid method—it combines the property of guaranteed con-
vergence from the Bisection Method, with the property of guaranteed convergence
of more sophisticated methods. Matlab’s fzero implements a version of Brent’s
Method, along with a pre-processing step, to discover a good initial bracketing
interval–if one is not provided by the user.

Here is how I used fzero to do computer problem 2 in section 1.3

f=@(x) sin(x.^3) - x.^3;

fzero(f,0.1)

fzero gives an answer of −0.0014, only two decimal places of accuracy compared to
the exact solution x = 0.

7. Wednesday 20 February

We quickly discussed the material from our hw sets in chapter 0. This material
should be review. You should read it and do the problems on your own.

We also talked about section 1.3 Limits of Accuracy. One of the goals of numer-
ical analysis is to compute answers within a specified level of accuracy. Working
in double precision means that we store and operate on numbers that are kept
to about 16 digits of accuracy. Can answers always be computed to 16 correct
significant digits?

Example 7.1. 1.3 Limits of Accuracy

• Use Bisection to approximate root of f(x) = x3 − 2x2 + 4
3x−

8
27 to within

6 correct significant digits.
• Exact Answer: x = 2

3 = 0.666666
• The problem is that matlab thinks it has found a root x = 0.666664123535156.

Assume that f is a function and that r is a root. Assume that xa is an approxi-
mate for r. The backward error of the approximation xa is |f(xa)| and the forward
error is |xa − r|. The forward error is the only error we have studied before today.
We used to call the forward error simply the error.

Now that we have two types of error to discuss, we can explain what happened
in the previous problem. Bisection search was unable to approximate 6 significant
digits of the solution because the backward error became much smaller than the
forward error and the Bisection method stopped; this is called the stopping criteria.

The usage of ”backward” and ”forward” can be viewed by thinking of the ”do-
main” of the problem (the function f(x) = x3−2x2+ 4

3x−
8
27 in the case of f(x) = 0)

8 M. AUTH

as the input of our method and the output as the solution (x = 0.666664123535156
in this case).

The subject of backward and forward error is relevant to stopping criteria for
equation solvers. The goal is to find the root r satisfying f(r) = 0. How do we
determine if xa is a good approximation? Two possibilities: (1) ”forward” make
|xa − r| small or (2) ”backward” make |f(xa)| small.

Whether forward or backward error is appropriate depends on the problem. For
the Bisection method both errors are easy to bound.

Example 7.2. 1.3 Conditioning

• A problem is called sensitive if small errors in the input lead to large errors
in the output.
• One way to measure sensitivity is the emf, the error magnification factor.
• The condition number of a problem is the maximum emf.
• Problems are then ill-conditioned or well-conditioned.

8. Monday 25 February

We covered sections 0.4 on ”Loss of Significance” and section 1.3 on ”Limits of
Accuracy”. It is important that you begin to understand the issues raised in these
sections. Do not, however, fret over these problems. They are of lesser importance
than the key algorithms and their analysis.

At the end of class we began covering section 2.1 on ”Gaussian Elimination”. I
quickly reviewed Gaussian Elimination as you had seen it in your previous linear
algebra course then I began to explain how our approach to Gaussian Elimination
will be somewhat different in 328.

Please work through the ”Matlab Tutorial” by Kelly Black on our webpage. In
particular make sure that you play around with her Gaussian Elimination code in
the ”Loops” section.

9. Wednesday 27 Frebruary

We worked through sections 2.1 and 2.2 in our text. Please spend time solving
linear systems Ax = b by finding the LU and then carrying out two-step back
substitution.

If you feel like you are in need of a linear algebra review, Gilbert Strang’s video
lectures 1, 2, 4, 5, and 9 may serve as a helpful review. I have covered some of this
material already in our class. There is a link to Professor Strang’s vidoes on our
coursepage.

10. Monday 4 March (Snowday)

I want you to read sections 2.3 and 2.4 in your textbook and try to do some of
the assigned exercises and computer problems. Furthermore, I want you to watch
the Prof. Strang’s linear algebra lectures 4, 5, 6 (there is a link to these videos on
our webpage). You will need to teach yourself about permutation matrices, forward
error, and backward error in relation to the linear algebra equation Ax = b. In
order to learn how matlab can be used to make these approximations, you should
read the ”Linear Equations” chapter on the Numerical Computing with Matlab
link on our webpage http://math.sci.ccny.cuny.edu/pages?name=math328 Do not
worry if you do not understand the code in section 2.7 of the ”Linear Equation”

NUMERICAL ANALYSIS NOTES 9

chapter and you do not need to read section 2.11 in the ”Linear Equations” chapter.
I want you to be comfortable using matlab’s backslash and lu operators.

11. Wednesday 6 March

Exam 1.

12. Monday 11 March

We discussed sections 2.3 ”Sources of Error”. Please work through the problems
in this section. There is a lot of terminology that you need to learn. You may need
to reread this section several times throughout the semester.

I find it helpful to reread section 1.3 while reading section 2.3 because 1.3 dis-
cusses many of the same topics with respect of root approximations of solutions of
f(x) = 0 instead of our favorite matrix equation Ax = b of chapter 2.

13. Wednesday 13 March

We studied sections 2.5 ”Iterative Methods”and section 2.4 ”PA = LU Factor-
ization”. You only need to know the Jacobi and the Gauss-Seidel methods from
section 2.5 and the PA = LU decomposition with partial pivoting from section 2.4.

In section 2.4 the matlab command

[L,U,P] = lu(A)

returns the P,L, and U matrices for a given square matrix A.
Here is the code I used in class for section 2.5 iterations to approximate a solution

x to Ax = b. I will need to explain the Jacobi and Gauss-Siedel FPIs in class on
Monday.

13.1. First Iteration Code.

% FIRST_FPI Solves linear system Ax=b using fpi x=Tx+c

% when T=I-A and c = b.

A=[3 1 -1; 1 -4 2; -2 -1 5];

T=eye(3)-A;

b=[3 -1 2]’;

c=b;

x=[0 0 0]’; % initial guess

X=zeros(13,3); % FPIs

for i=1:12

x= T*x + c;

X(i+1,:)=x;

end

X

13.2. Jacobi Code.

% FIRST_JACOBI_FPI Solves linear system Ax=b using fpi x=Tx+c

% when Dx = -(L+U)x + b. So T=-D^-1(L+U) and c=D^-1(b).

A=[3 1 -1; 1 -4 2; -2 -1 5];

10 M. AUTH

b=[3 -1 2]’; % initial problem

L=tril(A,-1); % L = Lower triangular part (not LU decomposition)

U=triu(A,1); % U = Upper triangular part (not LU decomposition)

D=diag(diag(A)); % D = diagonal part (not LDU decomposition)

T=-inv(D)*(L+U); % Jacobi iterate

c=inv(D)*b;

x=[0 0 0]’; % initial guess

X=zeros(13,3); % FPIs

for i=1:12

x= T*x + c;

X(i+1,:)=x;

end

X

13.3. Gauss-Seidel.

% GAUSS_SEIDEL computes first 7 iterates of Gauss-Seidel’s method to

% solve system Ax=b when A is square b is column

% and x is initial guess.

L=tril(A,-1); % L = Lower triangular part (not LU decomposition)

U=triu(A,1); % U = Upper triangular part (not LU decomposition)

D=diag(diag(A)); % D = diagonal part (not LDU decomposition)

T=@(x) inv(L+D)*(b-U*x) % Gauss-Seidel iterate

for i = 1:7

x = T(x)

end

14. Wedensday 20 March

We covered sections 2.6 ”Methods for Symmetric Positive-Definite Matrices” and
section 2.7 ”Nonlinear Systems of Equations”.

In section 2.6 you need only compute the Cholesky factorization by hand for
2× 2 matrix, as we did in class. You need not program the Cholesky factorization.
You are not responsible for subsection 2.6.4 ”Preconditioning”.

In section 2.7 you need only memorize and know how to use (by hand and as
code) the ”Multivariate Newton’s Method”. Here is my code for doing Newton’s
method:

% NEWTON27 Newton’s method from example 2.32 in section 2.7

% Note that x = (x_1, x_2) is a vector.

f=@(x) [x(2)-x(1)^3, x(1)^2 + x(2)^2 - 1]’ % function f

Jf=@(x) [-3*x(1)^2, 1; 2*x(1), 2*x(2)]; % Jacobian matrix of f

NUMERICAL ANALYSIS NOTES 11

x=[1,2]’ % initial guess

for i = 1:7

x = x - inv(Jf(x))*f(x)

end

It is not a good idea to use Matlab’s inv command, since computing the inverse
requires too much work. Our textbook illustrates a superior way to make this
computation without computing the inverse.

15. Monday 25 March

We covered section 3.1. Interpolating polynomials are important in applications.
The idea is that we approximate a potentially complicated function known by a
table of its values with a polynomial. Polynomials are simple to work with so if
our approximate polynomial is close the actual function we will understand much
about the function.

There are two methods used to compute the Lagrange interpolation polynomial
in section 3.1: 1. Using the functions Lk(x) and 2. Using Newton’s divided differ-
ences. You should know both methods.

Programming these methods on a computer is tricky. You can use the code in
the book or my code.

% LAGRANGE_EVAL applies Lagrange interpolation to data points

% x, y, where x and y are n dimensional row vectors. The matrix C

% is the matrix of Newton divided difference coefficients. The

% Lagrange polyn is then evaluated at t.

C=zeros(n); % square matrix to hold coefficients from Newton’s

% divided difference.

C(:,1)=y’; % first column of C is y

for j=2:n

for i=1:(n-j+1)

C(i,j)=(C(i+1,j-1) - C(i,j-1)) / (x(j+i-1) - x(i));

end

end

% The first row of matrix C are the coefficients of the L.I.P.

% If you want to see these coefficients, include the line:

% disp(C(1,:))

% Now we evaluate the L.I.P. at the value t.

s=0; % evaluation

x_mult=1; % multiples of form (t-x1)(t-x2)...(t-xk)

for j = 1:n

s = s + C(1,j)*x_mult;

x_mult = x_mult*(t-x(j));

end

s

12 M. AUTH

We discussed the Interpolation Theorem, Theorem 3.3, in section 3.2. I did not
prove the theorem in class. You need not memorize the proof but you should know
that the MVT played a large role. Focus your efforts on solving the hw problems
like the example I did in class.

16. Wednesday 27 March

We covered section 3.4 ”Cubic Splines”. You are only required to understand the
material describing how to turn the cubic spline problem with n data points into
a linear system Ax = b of 3n − 3 equations with 3n − 3 unknowns. This material
can be found between p.166 through the bottom of p.169 in the second edition and
between p.173 and the bottom of p.176 in the third edition.

We also covered section 4.1 ”Least Squares”. It is good to review orthogonality
from linear algebra and calculus 3. One good way to do is is to watch Gilbert
Strang’s video lectures 14, 15 and 16. There is a link to these videos on our webpage.

17. Monday 1 April

We covered section 4.1 ”Least Squares” and section 4.2 ”A Survey of Models.”
Matlab commands used to solve the least square problem Ax̄ = b is

x = (A’*A) \ A’*b

We also talked about example 4.5 in section 4.1 where we use the normal equa-
tions to approximate 11 data points generated by the polynomial y = f(x) = 1 +
x+x2+. . .+x7 with a polynomial of the form p(x) = c0+c1x+c2x

2+. . .+c7x
7. It is

obvious that the solution to the normal equations should be c0 = c1 = . . . = c7 = 1.
However the solution c = (A′ ∗A)
(A′ ∗ y) using MATLAB’s system of equations solver to solve the normal equation
ATAc = AT y is not c = (1, 1, . . . , 1). There is error. The error must be the result
of the matrix (ATA) being ill-conditioned. This is odd because the matrix A is not
ill-conditioned. You should try this with matlab.

Since least squares problems are so important we need to find a better way to
solve the normal equations ATAx̄ = AT b without magnifying error so much. This is
done by factoring matrix A as A = QR. Since the matrix Q has orthogonal columns
we will avoid having ill-conditioned problems resulting from ”parallel” equations
discussed in section 2.3

18. Wednesday 3 April

One way to achieve QR factorization is by using the Gram-Schmidt algorithm.
This algorithm is important. You should know it. The key step in the algorithm is

q̃k = ak − (qT1 ak)q1 − (qT2 a2)q2 − . . .− (qTk−1ak)qk−1

where ak is the k−th column of your starting matrix A and qi is the i−th column
of your orthogonal (columns) matrix Q which you generate one column at a time.
I find it easiest to remember this step by thinking geometrically: For each column
ak subtract off all the parallel parts of previous columns to get q̃k, a vector normal
to all previous columns—but not yet unit length.

In order to program this into MATLAB (or Python, C++, . . .), you must learn
how to program the computer to add things up. For instance, here is how to tell
MATLAB to compute 1 + 22 + 32 + . . .+ 712 :

NUMERICAL ANALYSIS NOTES 13

sum = 0;

for i = 1:71

sum = sum + i^2;

end

sum

You should understand this code before trying the Gram-Schmidt algorithm needed
to get QR factorization of a matrix A. One such algorithm, clgs, is given in the
section. You should understand it and use it—note that our author uses y instead
of q̃k for obvious reasons in his code.

Householder reflectors is another way to compute the QR factorization. It will
not be on the quiz on Monday—although it may appear on future exams. I will
explain this technique after the quiz. You will never be quizzed or tested on the
”full QR factorization.”

19. Monday 8 April

We covered section 4.5 ”QR Factorization”. In particular we studied how to
use QR factorization to solve a least square problem. We also learned a faster
algorithm involving Householder reflectors to achieve QR factorization of a matrix.
You should be able QR factorize using the Gram-Schmidt algorithm as well as
Householder reflectors.

We covered section section 5.1 ”Numerical Differentiation”. Approximating
derivatives is tricky business because it is easy to introduce error. We want to
make h small in order to get a good approximate derivative but not too small
that rounding errors enter our approximations. Please run the following code for
Example 5.3 in section 5.1 :

% EXAMPLE53 In this code I tried to generate the table in

% example 5.3 on page 247 of section 5.1

% this is our 2 pt approx of f’(x).

% use this 2 pt approximate to approximate (e^x)’ at x = 0. We

% know the exat answer is f’(0) = 1.

for n = 1:9

h = 10^(-n);

d(n) = (exp(0+h) - exp(0)) / h; % d is a vector of approximate

% derivatives for different h values.

e(n) = abs(1 - d(n)); % error computes the difference between

% the know derivative of 1 and the d(n) approximate.

end

[d’, e’] % matrix first column is approximates; 2nd column is errors.

One way to measure the error of a method is to discuss its order. For instance,
the three-point centered difference formula is order 2. We can write it in the form
f ′(x) = Q = F (h) + Kh2. It is a good practice using Taylor series to prove for
yourself that it is indeed order two. Exercise 8 is also good practice using Taylor’s
theorem to verify order.

14 M. AUTH

20. Wednesday 10 April

Extrapolation is a good way to reduce error (increase the order) of an algorithm
without letting h get too small.

Please read section 5.2 ”Newton-Cotes For Numerical Integration.” In this sec-
tion you will learn how to approximate integrals using a functions Lagrange In-
terpolation polynomial and error formula. In order to program these integration
algorithms into a computer you must learn how to compute sums. Integration is
one way to add things up.

We covered section 5.2 ”Newton-Cotes Formulas for Numerical Integration”. You
should be able to derive the Trapezoid rule and its error form using your knowledge
of Lagrange Interpolating polynomials. You need not be able to derive Simpon’s
rule or its error form. You should be able to easily turn the Trapezoid rule and
Simpson’s rule into their corresponding ”composite” forms. You need not be able to
derive the composite error formulas, though you should memorize (write on cheat
index card) and understand how to use these error forms.

Here is my code to complete Example 5.8 in section 5.2:

% TRAPEZOID_METHOD Example 5.8 from section 5.1

f=@(x) log(x);

a = 1; b = 2; % integral bounds

% Trapezoid method

m = 4; % number of panels

h = (b - a)/m; % panel width

T = f(a) + f(b); % T is the Trapezoid running sum

for i = 1:(m-1)

T = T + 2*f(a + i*h);

end

T = (h/2)*T;

T

It is important that you really understand the above code and how it adds up all
of the Riemann sums. This code together with our FPI code are the most important
code in the course. You should also be able to code Simpson’s rule for example 5.8.

% Simpson’s method

m = 4; % number of panels

h = (b - a)/(2*m); % panel width

S = f(a) + f(b); % S is Simpson’s running sum

% Add up the weights of 4

for i = 1:m

S = S + 4*f(a + (2*i - 1)*h);

end

% Add up the weights of 2

for i = 1:(m-1)

S = S + 2*f(a + 2*i*h);

end

S = (h/3)*S;

NUMERICAL ANALYSIS NOTES 15

S

You should know this code well. You should play around with it to do different
problems. Remember: the rough idea is to let h get smaller in order to get a better
approximation. This only works to a point, however. When h gets too small (too
many panels), computer errors can arise.

You will be required to use a computer on next week’ (Wednesday 17 April) hw
quiz. This will be our final hw quiz.

21. Monday 15 April

Learned how to derive the Trapezoid and Simpson Rules from the Lagrange
Interpolation polynomial and error.

22. Wednesday 17 April

We covered section 5.3 ”Romberg Integration”. This is how extrapolation can
be used on the Trapezoid Rule. As we saw in our example in class, extrapolation
can improve the approximation significantly without forcing h to be too small.

Here is my Romberg code. Note there are two parts: (1) Find several Trapezoid
approximations (each with half the previous stepsize h) and store them in the
first column of your R matrix, and (2) Extrapolate this column knowing that the
Trapezoid method is order two—finally we can continue to extrapolate one column
at a time...

% ROMBERG_INTEGRATION

% Approximates the integral of f(x) on the interval a<=x<=b

% using Romberg integration in section 5.4 computer problem 2.

clear

f=@(x) exp(cos(x)); a=0; b=pi; % function and boundaries

R=zeros(5); % Romberg Integration Tableau

R(1,1)=(b-a)/2*(f(a)+f(b));

% First approximate integral using Trapezoid rule with

% n=1,2,4,8,16 panels.

for i = 2:5

h = (b-a)/2^(i-1);

R(i,1) = 1/2*R(i-1,1);

for k = 1:2^(i-2)

R(i,1) = R(i,1) + h*f(a+(2*k-1)*h);

end

end

% Extrapolate on first column of R

for j=2:5 % columns

for i=j:5 % rows

R(i,j) = (4^(j-1)*R(i,j-1) - R(i-1,j-1)) / (4^(j-1) - 1);

end

end

16 M. AUTH

R

Please read sectoin 6.1 ”Initial Value Problems” over break. You need not worry
about the Lipschitz constant or Lipschitz continuity. I find Arthur Mattuck’s first
three video lectures on differential equations (I’ve included a link to these videos
on the bottom of our coursepage) contain a good review of differential equations
for our purposes.

We covered section 6.1 ”Initial Value Problems.” You skip the material on the
Lipschitz constant and Lipschitz continuity.

You should be able to calculate Euler approximations to IVPs by hand and using
a computer. Here is my code for Euler’s method:

clear

f=@(t,y) t^2 - y^2

t(1) = 0;

w(1) = 1;

h = 0.1;

for i=1:17

t(i+1) = t(i) + h;

w(i+1) = w(i) + f(t(i), w(i))*h;

end

[t’,w’]

23. Monday 29 April

Make sure that you can compute the exact answers to IVPs using separation of
variables and first-order linear methods. Exercise 3 from 6.1 uses separation and
exercise 4 from 6.1 uses first-order linear. If you have not taken math 391 at CCNY
you will need to learn these two methods in order to complete these problems.

We covered sections 6.2 ”Analysis of IVP solvers” and section 6.3 ”Systems of
ODEs”. You need not understand the proofs in section 6.2. You should know that
Euler’s method is an order one method while the ”Improved Euler’s method” a.k.a
the Trapezoid method is order two. You should be able to compute the Trapezoid
method by hand and using code. Here is my code to compare Euler’s method with
the Trapezoid method and the exact answer to an IVP.

% COMPARE_METHODS

% Euler’s vs. Improved Euler’s vs. Exact Answer

clear

clf

f=@(t,y) y - 0.5*exp(t/2)*sin(5*t) + 5*exp(t/2)*cos(5*t); % ODE

h=0.01; % stepsize. Play around with different h values.

n=700; % number of steps to time t=7. Play around with n.

% Euler’s method to create piecewise linear approximation w(t) to

% the real solution y(t).

w(1)=0; % initial condition for euler’s. Try different intial values.

NUMERICAL ANALYSIS NOTES 17

t(1)=0; % intial time

for i =1:n

s1 = f(t(i),w(i)); % Euler’s slope.

w(i+1) = w(i) + h*s1; % update w(t)

t(i+1) = t(i) + h; % update time.

end

plot(t,w,’r’) % Connect the dots of euler’s approximate solution in red.

hold on;

% Improved Euler’s method (or Trapezoid method or Heun method) is

% used to create piecewise linear approximation v(t) to

% the real solution y(t).

v(1)=0; % initial condition for euler’s. Try different intial values.

t(1)=0; % intial time

for i =1:n

s1 = f(t(i),v(i)); % Euler’s slope.

s2 = f(t(i) + h,v(i) + s1*h); % Euler’s next slope. Sniff

% ahead slope.

v(i+1) = v(i) + h*(s1 + s2)/2; % update w(t) with the average

% of the Euler and Sniff ahead slopes

t(i+1) = t(i) + h; % update time.

end

plot(t,v,’k.’) % Connect the dots of euler’s approximate solution in red.

hold on;

% Exact Solution. We know from differential equations course.

t = 1:h:h*n; % time intervals

y = exp(t/2).*sin(5*t); % y(t) is the exact solution

plot(t,y,’b’) % exact solution in blue

In section 6.3 we study problems where more than one variable is changing. Here
is my rabbits and foxes code I used in class using the predator-prey model.

24. Wednesday 1 May

I started class doing some hw problems from sections 6.1 and 6.2 to compare
Euler’s method with the Trapezoid method and with the exact answer. We were
particularly interested in what it meant that Euler’s method is order 1 and the
Trapezoid method is order 2.

Here is the code for the logistic model used to model the rabbit population on
an island without any predators.

% EULERS_METHOD to model rabbit population using logistic model.

clear

clf

f=@(t,y) .1*y*(1 - y/10000);

h=0.1; % stepsize in months

n=120*5; % 5 years into future

18 M. AUTH

t(1)=0; % initial time

w(1)=8200; % initial number of rabbits

for i =1:n

t(i+1) = t(i) + h; % update time

w(i+1) = w(i) + f(t(i),w(i))*h; % update height, approximate solution

end

plot(t,w) % solution graph

hold on

t(1)=0; % initial time

w(1)=10900; % initial number of rabbits

for i =1:n

t(i+1) = t(i) + h; % update time

w(i+1) = w(i) + f(t(i),w(i))*h; % update height, approximate solution

end

plot(t,w,’b’) % solution graph

t(1)=0; % initial time

w(1)=10000; % initial number of rabbits

for i =1:n

t(i+1) = t(i) + h; % update time

w(i+1) = w(i) + f(t(i),w(i))*h; % update height, approximate solution

end

plot(t,w,’r’) % solution graph

Here is Euler’s method used in the predator-prey model from class. This is our
first example of a system of IVPs from section 6.3.

% EULERS_METHOD

clear

clf

% SET PARAMETERS FOR PREDATOR (FOX) AND PREY (RABBIT)

a=.1; % 0.1 rabbit per month per rabbit growth

b=10000; % carrying capacity

c=0.005; % rabbit per month per rabbit-fox

d=0.00004; % fox per month per rabbit-fox

e=0.04; % fox per month

RPrime=@(R,F) a*R*(1 - R/b) - c*R*F; % Change in Rabbits = R’

FPrime=@(R,F) d*R*F - e*F; % Change in Foxes = F’

h=0.1; % stepsize in months

n=120*20; % 20 years into future

t(1)=0; % initial time

NUMERICAL ANALYSIS NOTES 19

r(1)=2000; % initial number of rabbits

f(1)=10; % initial number of foxes

for i =1:n

t(i+1) = t(i) + h; % update time

r(i+1) = r(i) + RPrime(r(i),f(i))*h; % update rabbit population

f(i+1) = f(i) + FPrime(r(i),f(i))*h; % update fox population

end

plot(t,r,t,100*f) % solution graphs

We covered section 6.3 ”Systems of Ordinary Differential Equations.” We learned
how to reduce a higher order differential equations to a system of first-order equa-
tions. This is important. Our approximate methods (Euler’s, Trapezoid, RK4)
only work for first order systems of equations.

Here is my pendulum code I used:

% EULERS_METHOD to approximate pendulum.

clear

clf

y1Prime=@(y1,y2) y2; % Change in angle theta

y2Prime=@(y1,y2) -sin(y1); % Change in angle prime (the derivative)

h=0.1; % stepsize in radians

n=80*pi; % Go 8 radians forward

t(1)=0; % initial time

y1(1)=pi/3; % initial angle

y2(1)=0; % initial angular velocity

for i =1:n

t(i+1) = t(i) + h; % update time

y1(i+1) = y1(i) + y1Prime(y1(i),y2(i))*h; % update angle

y2(i+1) = y2(i) + y2Prime(y1(i),y2(i))*h; % update angle velocity

end

plot(t,y1,t,y2) % solution graphs of angle and angle velocity

It is remarkable how the graphs of the θ(t), v(t) and solutions to the pendulum
problem are similar to the rabbits and foxes from last class.

We also studied section 6.4 ”Runge-Kutta Methods and Application”. This is a
favorite for those trying to quickly approximate a solution to an IVP. It requires
computing a super-slope, a combination of four Euler-like slopes, in order to get to
the next step in RK4. The extra computational effort is mostly worth it because
the approximate is often much closer to the exact answer than other methods.

Here is my RK4 method:

% RK4 Implemented to solve Example 6.18

f=@(t,y) t*y +t^3 % D.E

y=@(t) 3*exp(0.5*t^2) - t^2 - 2; % exact solution from p. 283

20 M. AUTH

% Compute RK4 for n = 5, 10, 20, 40, ..., 640 steps

a = 0; b = 1; % a = start time, b = end time

n = 5; % number of steps to start

while n <= 640 % loop for each n

clear t; clear w; % clear variable for each n

t(1) = 0; % initial time is 0

w(1) = 1; % initial approximation is 1

h = (b - a)/n; % stepsize

for i = 1:n % loop to implement RK4

s1 = f(t(i), w(i)); % the Euler slope

s2 = f(t(i) + h/2, w(i) + h*s1/2); % sniff ahead slope

s3 = f(t(i) + h/2, w(i) + h*s2/2); % another sniff ahead slope

s4 = f(t(i) + h, w(i) + h*s3); % still another sniff ahead

w(i+1) = w(i) + h*(s1 + 2*s2 + 2*s3 + s4)/6; % update w

t(i+1) = t(i) + h; % update t

end

disp([n, h, w(n+1), y(1), abs(w(n+1) - y(1))]) % display (steps, h, approx,

% error)

%disp(abs(w(n+1)-y(1)));

n = 2*n; % update n for next loop

end

For the exam on Wednesday we decided that each student could bring in a one
page (ONE SIDED) formula sheet.

25. Monday 6 May

We reviewed for Wednesday’s exam by doing exercises 1b and 2b in section 6.3.
We then tried to run the computer code to do these exercises in computer problem
1 but my computer froze before we could see the code in action. Here is my code:

% My code for exercise 1b and computer problem 1 from section 6.3

% You should be able to alter my code to do 2b from section 6.3

y1Prime=@(y1,y2) -y1 - y2;

y2Prime=@(y1,y2) y1 -y2;

h = 0.25;

t(1) = 0; % initials

y1(1) = 1;

y2(1) = 0;

for i = 1:9

t(i+1) = t(i) + h;

y1(i+1) = y1(i) + h*y1Prime(y1(i),y2(i));

y2(i+1) = y2(i) + h*y2Prime(y1(i),y2(i));

end

[t’,y1’,y2’]

NUMERICAL ANALYSIS NOTES 21

We also covered sections 7.1 and section 7.2. In section 7.2 we only discussed 7.2.1
”Linear Boundary Problems”. You are not responsible for section 7.2.2 ”Nonlinear
Boundary Problems” and I will not cover it in class.

26. Wednesday 8 May

Exam 2.

27. Monday 13 May

The last day of lecture today we covered sections 12.1, 12.2, and 12.3. Since we
ran out of time, section 12.3 will appear on the final exam as a two point extra
credit problem.

In section 12.1 you only need to understand the power iteration and inverse
power iteration code. You need not understand the Rayleigh quotient iteration
code.

Here is the code I used in class for the power iteration.

% Power Iteration: Program 12.1

clear

A = [1 2; 4 3];

x = [1 0]’; % initial guess

for k = 1:13 % I’ve chosen 13 steps of iteration. You should change.

u = x / norm(x);

x = A*u;

lam(k) = u’*x;

end

lam’

u=x/norm(x)

And here is my inverse power iteration code.

% Inverse Power Iteration: Program 12.1

A = [1 2; 4 3];

x = [1 0]’; % initial guess

for k = 1:13 % I’ve chosen 13 steps of iteration. You should change.

u = x / norm(x);

x = A\u;

lam(k) = u’*x;

end

lam’

u=x/norm(x)

Make sure that you know how to do these algorithms by hand as well and that
you are not just typing into matlab.

In section 12.2 we only covered subsection 12.2.1. You may skip the rest of the
section. Here is the code I used in class to illustrate the QR algorithm.

% QR_UNSHIFTED: as appears in section 12.2

22 M. AUTH

A = [1 2; 2 1];

Q = eye(2,2);

Qbar = Q; R = A;

for k=1:15 % I’ve chosen 13 iterates. Experiment by changing.

[Q,R] = qr(R*Q); % QR factorization from matlab

Qbar = Qbar*Q;

end

lam = diag(R*Q) % eigenvalues on diagonal

Qbar % eigenvectors by repeated powers.

References

