
Math 328 hw

1 week 4

1. Because q(x) looks very similar to the orginal polynomial. The difference in the two could have been
due to a measuring error in the scientific model. As numerical analysts we would hope that the solutions
(the roots) of the two similar polynomials would be similar since we do not want small measurement
errors to drastically change our computations. Unfortunately in this case; the roots are not similar.

2. It easy to verify a given function v(t) is a solution to a IVP: simply plug v and its derivatives into the
differential equation and verify that the left hand side equals the right hand side and the initial condition
is satisfied. Later in the course we will attempt to solve IVP when we are not given the solution v(t) as
a formula. This is much more interesting.

3. (a) 1.9999923706054688

(b) 1.5619206968586228e-16

(c) -1.52587890625e-05

(d) -1.0. Here is the code for part d)

u,v = 2,-1

print(0,u)

for k in range(2,18):

u,v = v,v/u

print (k,u)

4. You can write code to approximate or review your calculus notes about convergent sequences.

(a) 0

(b) 1

(c) exp(7)

(d) diverges to ∞.
(e) 0

5. Assume the solutions to each of the following discrete dynamical system converge code to find its limit.
Use proposition 2.2 and direct computation to show the limit u∗ is a fixed point.

(a) 8

(b) 4

(c) 4

(d) 5

(e) 2

2 week 5

1. (a) 1.1078205295102599

(b) 0.9875064291508866

(c) 1.1236388847132548

(d) 1.124123029704334

I have most confidence in the final approximation since it was in that case that the most digits were
stabilized.

2. When λ = 0 in Example 2, g(u) = 0 and all discrete dynamical systems converge to 0, the only fixed
point. In fact all discrete dynamical systems take the form u(0), 0, 0, . . . This is trivial, not interesting.

Math 328 hw

3. 6.04 ≤ f(2.1) ≤ 6.05.

4. Consider f(x) = x
x2+1 .

(a) f ′(x) = 1−x2

(x2+1)2

(b) (−1, 1)

(c) (−∞,−1) ∪ (1,∞)

(d) min: − 1
2 . max: 1

2 .

5. You can either graph g(u) = u2−1
3 together with y = u as we did in class or you can solve the fixed point

equation u∗ = g(u∗) = (u∗)2−1
3 . This is a quadratic equation with two real roots. Only one (unique) root

is in the interval [−1, 1].

6. After some playing around I found an equivalent fixed point problem u = g(u) = 3
1
4

(
u2 + 1

) 1
4 . Differ-

entiating gives g′(u) = 3
1
4 u
2

(
u2 + 1

)− 3
4 . In order to use Theorem 2.6 (and its proof) we need to find σ

so that |g′(u)| < σ < 1 for all u in [1, 2]. In other words, we want to maximize g′(u) on a closed inter-

val. This is a calculus problem. We do it by computing g′′(u) = 3
1
4

2

(
(u2 + 1)−

3
4 − 3u2

2 (u2 + 1)−
7
4

)
.

We find that 0 = g′′(
√

2) and that g′(u) has a maximum value at u =
√

2. Using a calculator
g′(
√

2) ∼ 0.4082482904638631 so we can use the proof of Theorem 2.6 with σ = 0.45 (or any σ > g′(
√

2)).
In order to get two digit of accuracy we need to find a k so that |e(k)| ≤ 0.5× 10−2. Find an appropriate
k by solving |e(k)| ≤ σk|e(0)| ≤ σk. So we want to find k with 0.45k ≤ 0.5× 10−2. Using logs or python
code you can find k = 7 or any bigger k works.

7. I used Theorem 2.6 and its proof. I also tried our fixed point code for each g(u) function with seed
u(0) = 2.5. Please use the code and Theorem 2.6.

(a) 3rd BEST g′(u∗) = 18
21 linear convergence.

(b) BEST g′(u∗) = 0 quadratic convergence.

(c) WORST g′(u∗) > 1 unstable.

(d) 2nd BEST g′(u∗) = − 1
2 linear convergence.

8. Read middle of page 250, Section 6.3 Nonlinear Equations, until the middle of page 255 in Newman’s
text. Note that Newman calls our ”discrete dynamical iteration method” from class ”the relaxation
method.” There are no exercises on these pages but try to get the code examples to print out the same
discrete dynamical systems using your own python code.

3 week6

1. (a) This system of nonlinear equations can be solved by elimination.

(b) Try the seed (x(0), y(0)) = (2.1, 0.5) to convince yourself that the fixed point (x∗, y∗) = (2, 0.4) is
unstable in the given discrete dynamical system.

(c) Try x =
√

2−y
y and y = x

1+x2 .

2. 4.965114.

3. 0.033765242898, 0.169395306767, 0.380690406958, 0.619309593042, 0.830604693233, 0.966234757102.

4. Use Newton’s method to compute the root x3 − 5 = 0. ANSWER: 1.70991

5. 4.43027

(a) 16 steps.

Page 2

Math 328 hw

(b) 3 steps.

6. f ′(2.67) ∼ −0.89086.

7. Both ways 326045071.665m. Newton’s takes 8 steps starting at the seed r(0) = 1 × 105m. Secant takes
11 steps starting with seeds r(0) = 1× 105m, r(1) = 1× 106m.

8. By the IVT. f is continuous since all polynomials are continuous and f(1) = −1 < 0 and f(2) = 12 > 0.

4 week 7

1. graph

2. (a) code

(b) I = 4.4004267

(c) When N = 100I = 4.40000004267, and when N = 1000, I = 4.4

3. graph

4. graph

5. 0.746764254652294

6. 3:04393009815514

5 week 8

1. (a)
[
0
]

(b)

 4 5
8 10
−4 −5

(c)

1 0 0
3 −2 −6
0 2 2

(d)

[
1 0 0
3 −2 −6

]
2. Verify both using matrix multiplication.

3. Verify using matrix multiplication.

4. A3 =

[
1 2
2 4

]
.

5. Show by multiplying EE−1.

6. Show all parts by multiplying matrices.

7. Try to find a contradiction when solving for a and c using matrix multiplication.

8. DA has the same first row as A (multiplied by 3) and the same second row as A (multiplied by 5). EA
has first row and second row the same as the second row of A.

9. U =

2 3 1
0 1 3
0 0 8

 . The pivots are 2, 1, and 8. The solution is (x, y, z) = (2, 1, 1).

Page 3

Math 328 hw

10. U =

1 1 0
0 2 1
0 0 −2

 , E1 =

 1 0 0
−4 1 0
0 0 1

 , E2 =

1 0 0
0 1 0
2 0 1

 , and E3 =

1 0 0
0 1 0
0 −2 1

 . The E matrix is

E = E3E2E1 =

 1 0 0
−4 1 0
10 −2 1

 . Multiply to check EA = U.

11. EAx = Eb is the system 1 1 0
0 2 1
0 0 −2

xy
z

 =

 1
4
−10

which has solution

xy
z

 =

 1
2
1
2
−5

.

12. E =

 1 0 0
0 1 0
−3 0 1

 , L =

1 0 0
0 1 0
3 0 1

 , and U =

2 1 0
0 4 2
0 0 5

 .
13. E1 =

 1 0 0
−2 1 0
0 0 1

 , E2 =

 1 0 0
0 1 0
−3 0 1

 , and E3 =

1 0 0
0 1 0
0 −2 1

 . We find U =

1 0 1
0 2 0
0 0 2

 and

L

1 0 0
2 1 0
3 2 1

 , the matrix of multipliers.

14. c =

[
2
3

]
, x =

[
−5
3

]
, and A =

[
2 4
8 17

]
. A quick multiplication shows that Ax = b.

6 week 9

1. Reading.

2. See page 219 Newman for Python ideas.

3. (a)

4V1 − V2 − V3 − V4 = 5

−V1 + 3V2 − V4 = 0

−V1 + 3V3 − V4 = 5

−V1 − V2 − V3 + 4V4 = 0

(b) [3. 1.666666667 3.333333333 2.]

4. Use the ’psuedocode’ from page 56 in Olver’s notes.

5. from numpy import array, empty, identity

A = array([[1,1,1,1],

[1,2,3,4],

[1,3,6,10],

[1,4,10, 20]], float)

N = len(A) # size of the square matrix A

Page 4

Math 328 hw

L = identity(N)

Gaussian elimination for each column j

for j in range(N):

if A[j,j] == 0:

print(’A is not regular’)

break

for i in range(j+1, N):

L[i,j] = A[i,j]/A[j,j] # the multiplier in the (i,j) position.

A[i,:] -= L[i,j]*A[j,:] # Subtract multiple of row from lower rows.

print(A) # A has now been eliminated to U

print(L) # L is the lower triangular matrix, the matrix of

multipliers

6. First apply LU decomposition above. Then solve for the columns of A−1, one at a time.

7. see solution to 6.1.

8. (a)

18
5
0

(b)

3
4
5
5

9. (a)

 3 2
−2 4
−2 2

(b)

[
2 0 −1
−3 1 2

]

(c)

1 −21
6 −7
1 4

 .
10. A−1 = − 1

2

[
2 −2
−3 2

]
.

11. A−1 =

 1
2 0 1

2
1
2 1 − 1

2
− 1

2 0 1
2

 .
12. c = 1

3 .

13. L =

1 0 0 0
2 1 0 0
0 −1 1 0
0 0 1 1

 , U =

1 2 0 0
0 −1 1 0
0 0 3 3
0 0 0 1

 .

14. P =

0 1 0
0 0 1
1 0 0

 , P1 =

1 0 0
0 0 1
0 1 0

 , and P2 =

0 0 1
0 1 0
1 0 0

 .

Page 5

Math 328 hw

15. P =

0 1 0
0 0 1
1 0 0

 . There is another answer. To test your answer compute P 3.

16. (a) P =

0 0 1
0 1 0
1 0 0

 , L =

1 0 0
0 1 0
0 1

3 1

 and U =

2 1 1
0 3 8
0 0 − 2

3

 .
(b) same L and P as above with D =

2 0 0
0 3 0
0 0 − 2

3

 , V =

1 1 1
0 1 8
0 0 1

 .
17. See the Olver’s notes for worked solutions.

7 week 10

1. Both left and right sides are 1.

2. Verify the inequality by computing both sides and comparing.

3. 1
5

[
4
3

]
, 1√

5

[
1
2

]
, and θ = 2√

5
. a =

[
1
2

]
, b =

[
−2
1

]
, c =

[
−1
−2

]
.

4. (a) -1

(b) 0

(c) -3

5. (a) There are an infinite number of vectors perpendicular to v. They form a line through the origin

parallel to

[
1
2

]
, i.e. w =

[
w1

w2

]
= t

[
1
2

]
for any real t. In linear algebra we say that

[
1
2

]
forms a

basis for the solution space. This terminology can be confusing since there are many basis of this

solution set. For example,

[
−12
−24

]
also serves as a basis.

(b) There are an infinite number vectors perpendicular to v. In total these vector

xy
z

 form the plane

through the origin with equation x + y + z = 1. The vectors v1 =

 1
0
−1

 and v2 =

 1
−1
0

 form a

basis of this plane. (There are an infinite number of other bases of this space but a key fact is that
each basis of this space has exactly two vectors.)

(c) This space is a line through the origin parallel to b =

 1
−2
1

. b serves as a basis for this space.

6. (a) π
3

(b) π
2

(c) π
3 .

7. 2 ≤ ||v − w|| ≤ 8 and −15 ≤ v · w ≤ 15.

8. For the first part use Gaussian elimination to show that the matrix A =
[
v1 v2 v3

]
has rank 3, i.e. it

has 3 pivots, when the columns of A are the vectors v1, v2, v3. For the second part show that the system
Bx = 0 has a solution x 6= 0 when B =

[
v1 v2 v3 v4

]
.

Page 6

Math 328 hw

9. (a) independent

(b) dependent.

10. (a) v1 =

[
1
2

]
(b) v1 =

[
1
2

]
, v2 =

[
2
5

]
.

11. Here is the code from class:

from numpy import array, dot

A = array([[2,1], [0,1]],float)

u = array([1.00005,-1],float) # seed

for k in range(110):

print(k,u)

u = dot(A,u) #update u

(a) the zero vector ~u∗ =

[
0
0

]
is obviously a fixed point. If you want to find all fixed points you will have

to wait until class next week. Yet, for now, try to use Proposition 2.2 from Olver’s notes and your
code to guess (approximate) another fixed point.

(b) After trying many different seeds you should conclude that this linear iterative system is stable.

12. 3.

13. (a) independent

(b) dependent

14. (a) yes

(b) no.

15. (a) 3

(b) 0

(c) 12

8 week 11

Set A =
[
v1 v2

]
and solve (Gaussian Elimination?) Ac = w for the vector c =

[
c1
c2

]
.

(a) c =

[
1
3

]

(b) c =

[
−1
.5

]
.

1. (a) u(∗) =

[
0
0

]
(b) u(∗) =

[
1
1

]
(c) u(∗) =

[
1
1

]

Page 7

Math 328 hw

(d) u(∗) =

[
1
1

]
(e) u(∗) =

[
3
3

]
There is a line of fixed points u(∗). All such u(∗) are stable.

2. See Example 6.18 in Olver’s notes. u(∗) =

[
0
0

]
is the only fixed point. It is unstable—all seeds close to

u(∗) are repelled.

3. u(∗) =

[
0
0

]
is the only fixed point. It is stable. For any seed the discrete dynamical system approaches

the fixed point u(∗).

4. u(∗) =

[
0
0

]
is the only fixed point. It is stable. For any seed the discrete dynamical system that starts

near u(∗) remains near. In fact each discrete dynamical system is periodic. Eigenvalues are complex.

5. u(∗) =

[
0
0

]
is the only fixed point. It is stable. For any seed the discrete dynamical system approaches

u(∗) in the limit. Eigenvalues are complex.

6. See Example 6.19 in Olver’s notes.

7. λ1 = 1, λ2 = 1
2 are the eigenvalues of A with corresponding eigenvectors v1 =

[
.6
.4

]
, v2 =

[
1
−1

]
. A2 has

the same eigenvectors as A but new eigenvalues λ1 = 12, λ2 = 1
2

2
. A∞ also shares same eigenvectors

with A but λ1 = 1∞ = 1, λ2 = 1
2

∞
= 0.

8. (a) 1, 4 and 6.

(b) 2 and ±
√

3

(c) 0 and 6.

9. Use matrix multiplication to show QTQ = I.

10. Use matrix multiplication to show ATA 6= I.

11. see Example 6.21 in Olver’s notes.

12. (a) a,b = 0,1

for k in range(0,40):

print (k,a)

a,b = b,a+b

(b) The dominant (larger) eigenvalue is λ1 = 1+
√
5

2 with corresponding eigenvector v1 =

[
1
λ1

]
from

class. The seed to start the Fibonacci sequence is u(0) =

[
0
1

]
= c1v1 + c2v2 when c1 = 1√

5
. After

iteration the second term c2λ
39
2 v2 becomes small and we thus disregard it. We approximate F 39 is

the first component of c1λ
39
1 v1 which is 1√

5
λ391 = 63245986.00000007.

13. See the corresponding tables in the notes.

Page 8

Math 328 hw

9 week 12

1. w = − 5
3q1 + 4

3q2 + 7
3q3.

2. w = q1 + q2 + 2q3 + 2q4.

3. We did both of these iterations in class.

(a) diverges

(b) converges to u∗ =

1
1
1

 .

4. u(∗) =

−.1
.7
−.6
.7

 .
5. This is important code to write yourself.

6. In class we found q1 = 1√
2

 1
−1
0

 , q2 = 1√
6

 1
1
−2

 , q3 = 1√
3

1
1
1

 . Using A = QR you can find R = QTA,

since Q is orthogonal.

7. These algorithms are written by professional software developers. In this course we prefer to write our
own code when possible.

8. 1 = 4, λ2 = −2 and v1 = 1√
2

[
1
1

]
, v2 = 1√

2

[
1
−1

]
.

9. 11 [[3.99999857e+00 2.92968680e-03]

[2.92968680e-03 -1.99999857e+00]]

10. see notes.

11. Like always, compute a few iterates of the sequence A0, A1, A2, A3, . . . before running the code below.

import numpy as np

A = np.array([[.5,-1/3],[-1/3,.25]],float)

B = np.identity(2) # B will be the kth power of A

for k in range(35):

B = np.dot(A,B)

print(k, B)

12. Since one of the eigenvalues is 4, the iterates diverge.

13. Use the famous matrix decomposition D = X−1AX where X is the matrix of eigenvector columns of A
and D is the diagonal matrix with corresponding eigenvalues on the diagonal. Test this decomposition

for B =

[
1 3
3 1

]
.

14. see notes.

15. see notes.

Page 9

Math 328 hw

10 week13

1. (a) This can be solved exactly by separation of variables u(t) = C
x for some constant C. Your integral

curves should have roughly the same shape as the exact solutions.

(b) u(t) = −2t− 2 is an isocline which is also a solution. This solution appears unstable in that other
solutions, starting close, move away in positive time.

(c) u = t− 1 is an isocline that is also a solution. It looks stable.

2. Isoclines are circles centered on u-axis. u(t) is decreasing in first quadrant since u′ = − u
t2+u2 < 0 in the

first quadrant. Any solution that gets into the first quadrant must stay there in positive time because
(since the integral curve is decreasing and time is increasing) the only way to escape is to cross the
t−axis. This is impossible because the t−axis itself is an integral curve and the Fundamental Existence
and Uniqueness Theorem tells us that solutions (integral curves) can never touch.

3. (a) Compute yourself using pen and paper u(.1) ≈ .9, u(.2) ≈ .82, and u(.3) ≈ .758. Then write code to
make the same computation. Here is my Python code but you should try to write it on your own.

def F(t,u): # Differential Equation u’ = F(t,u)

return t - u

h=.1 # stepsize

t,u = 0,1 # initial condition: u(0) = 1

for k in range(4):

print(k,t,u)

A = F(t,u) # slope = A = u’

t += h # update time

u += h*A # update u (calculus step)

(b) If you draw some isoclines in first quadrant you will see that the exact solutions are concave-up so
Euler’s method must be an under approximation.

(c) Compute u(.1) ≈ 0.91 on your own with pen and paper then use code to get the rest. Like always
try to write your own code before using mine below:

def F(t,u): # Differential Equation: u’ = F(t,u)

return t - u

h=.1 # stepsize

t,u = 0,1 # initial condition: u(0) = 1

for k in range(4):

print(k,t,u)

A = F(t,u) # follow your nose slope

u_temp = u + h*A # Euler’s updated u

t += h # update time

B = F(t,u_temp) # sniff ahead slope

average slopes (Eulers and sniff-ahead) to update u

u += h*0.5*(A+B)

(d) At first sight the improved Euler method does seem to be better since the approximations from
improved Euler are greater. You can find an exact solution to this first-order constant coefficient
linear equation u′+u = t by multiplying both sides by the integrating factor et and then integrating
to give the exact solution u(t) = t − 1 + 2

et as a formula. Comparing the exact answers u(.1) =
0.90967..., u(.2) = 0.83746..., u(.3) = 0.781636..., we conclude that the Improved Euler Method does
improve the approximation in this case.

Page 10

Math 328 hw

4. Euler’s Method gives the following approximations u(.1) ≈ 1.1, u(.2) ≈ 1.231, u(1.2) ≈ 43.659.... The
isoclines are parabolas pointing left. Using the isoclines and slope field one can see that the exact solution
is concave up and thus the Euler approximation is low.

5. See Olver’s notes.

6. see Newman’s book p.327–335.

11 week 14

1. (a) This is the Fundamental Theorem of Calculus from Calc 1.

(b) 3.133043743699965, 2.6563890830909234, 2.6021191501836256, 2.595416398960074, 2.5945798164101492, 2.594475263299091

(c) same answers as (b)

(d) 2.6436288736191185, 2.5952122243308198, 2.5944720428386074, 2.594460510541956, 2.5944603303579092, 2.5944603275424996

(e) 2.6436288736191185, 2.595212224330818, 2.59447204283861, 2.5944605105419494, 2.5944603303578826, 2.5944603275425338

(f) 2.59477713694768, 2.594459790419353, 2.5944603273666123, 2.5944603274977864, 2.594460327497842, 2.594460327497986

(g) 3.1926056038394384, 2.5944517617707175, 2.5944603253985163, 2.5944603274973095, 2.5944603274978233, 2.5944603274978295.

(h) RK4 or Simpson’s rule seem best since most digits have stabilized.

2. from numpy import linspace

from math import floor

from pylab import plot,show

def Vin(t):

if floor(2*t) % 2 == 0:

return 1

else:

return -1

RC = 0.1

def F(t,u): # u = Vout

return 1/RC * (Vin(t) - u)

tpoints = linspace(0,10,1000)

t,u,upoints = 0,0,[] # initial conditions

n = 1000 # number of steps

h = (10 - 0)/n # stepsize

for k in range(n):

upoints.append(u) # make a ulist so we can graph

A = F(t,u) # Euler first slope

u_2 = u + 0.5*h*A # sniff ahead to find 2nd slope

t_2 = t + 0.5*h # let half time pass

B = F(t_2,u_2) # 2nd slope

u_3 = u + 0.5*h*B # sniff ahead to find 3rd slope

t_3 = t + 0.5*h # let half time pass (same t_2)

C = F(t_3,u_3) # 3rd slope

Page 11

Math 328 hw

u_4 = u + h*C # sniff ahead to find 4th slope

t_4 = t + h # let all time pass

D = F(t_4,u_4) # 4th slope

Finally update t and u before next loop, as always

t += h

u += h/6 * (A + 2*B + 2*C + D)

#print(u)

vin_points = []

for t in tpoints:

vin_points.append(Vin(t))

plot(tpoints,vin_points) # plot of squarwave input, Vin in blue

plot(tpoints,upoints) # plot of output (after filter) Vout in orange

Note that after the filter the Vout voltage rises and falls more gently

show()

3. See section 8.2 Newman’s text

4. (a) from numpy import array, arange

from pylab import plot, xlabel, show

def F(t,u): # u[0] = rabbits, u[1] = foxes

F0 = u[0] - 0.5*u[0]*u[1]

F1 = 0.5*u[0]*u[1] - 2*u[1]

return array([F0,F1],float)

a = 0.0 # initial time

b = 30.0 # final time

N = 1000 # number of steps

h = (b-a)/N # stepsize

tpoints = arange(a,b,h)

rabbits = []

foxes = []

u = array([2.0,2.0],float) # inital condition vector u^0 = (rabbits, foxes)

for t in tpoints:

rabbits.append(u[0])

foxess.append(u[1])

k1 = h*F(t,u)

k2 = h*F(t+0.5*h, u+0.5*k1)

k3 = h*F(t+0.5*h, u+0.5*k2)

k4 = h*F(t+h, u+k3)

u += (k1+2*k2+2*k3+k4)/6

plot(tpoints,rabbits) # blue

plot(tpoints,foxes) # orange

xlabel("t")

show()

(b) You can see that the both the rabbit and the fox population oscillate periodically. The phase of each
population is shifted to account for the increase in rabbit population will result (shortly afterwards)

Page 12

Math 328 hw

in an increase in foxes—while the increase in foxes will result (shortly afterwards) in the decrease
of rabbits.

5. Section 8.3 Newman

6. Using the formulas in Example 8.6, modify the rabbits and foxes code above–your ODE u′ = F (t, u)
will have u[0] = θ and u[1] = ω = dθ

dt . Superimposing the graphs of θ(t) and ω(t) onto one graph gives
an image similar to the rabbits and foxes graph above. Try to explain why the phases of the periods are
shifted in this physical case.

7. (a) There is only one fixed point u∗ = 0 except in the case a = 0, when every number is a fixed point.

(b) There is only one critical point u(t) = 0 except in the case a = 0, when every constant u0 gives a
critical point u(t) = u0.

(c) u(k) = u(0)ak

(d) u(t) = u0e
at

(e) Use a staircase diagram with different seeds. You’ll need to make separate staircase plots for each
constant a but you can put different seeds onto the same plot.

(f) You’ll need to make separate slope fields for each constant a but you can put different seeds onto
the same slope field.

(g) unstable: a = −2 and a = 2, stable: a = −1, a = −0.5, a = 0, a = 0.5 and a = 1, asymptotically
stable a = −0.5, a = 0, and a = 0.5. Convice yourself of this using the formulas, the staricase
diagrams, as well as Python code with various intitial conditions.

(h) unstable: a = 0.5, a = 1 and a = 2, stable: a = 0, a = −0.5, a = −1 and a = −2, asymptotically
stable a = 0, a = −0.5, a = −1 and a = −2. Convice yourself of this using the formulas, the
slope-field diagrams, as well as Python code with various intitial conditions.

8. (a) There is always one fixed point‘ u∗ =

[
0
0

]
to a linear dynamical system. However since the matrix

A =

[
5 4
4 5

]
has an eigenvalue of 1 it has a line of fixed points spanned by v1 =

[
1
−1

]
.

(b) Each system of ODE have only one critical point u(t) = u0 =

[
0
0

]
.

(c) u(k) = c1λ
k
1v1 + c2λ

k
2v2

(d) u(t) = c1e
λ1tv1 + c2e

λ2tv2

(e) stable: A =

[
.6 .9
.1 .6

]
, unstable: A =

[
−2 1
1 −2

]
and A =

[
5 4
4 5

]
. Use your python code for linear

iterative systems to convince yourself.

(f) stable: A =

[
−2 1
1 −2

]
, unstable: A =

[
.6 .9
.1 .6

]
and A =

[
5 4
4 5

]
. Use your python code for RK4

systems to convince yourself.

9. The critical point u(t) =

0
0
. . .
0

 is asymptotically stable if all of its (complex) eigenvalues λj = a + bi

have real part less than zero: a < 0.

Page 13

Math 328 hw

12 week 15

1. x̂ =

[
3
10

]
. The picture should indicate projection onto the xy−plane.

2. x̂ =

[
−1
2

]
, ||b−Ax̂|| = 42.

3. x̂ = 2. The projection is onto the line through the origin in three dimensional space pointing in the

direction

1
2
3

 .
4. p(x) = 6.75x2 − 28.35x+ 25.65 Sketch the points with scatter plot and graph the polynomial.

5. This is most easily done using the Lagrange interpolating polynomials p3(x) = y0L0(x) + y1L1(x) +
y2L2(x) + y3L3(x). In this case the computation is easy since y1 = y2 = y3 = 0. So the answer is

p3(x) = 27L0(x) = 27 (x−1)(x−2)(x−3)
(0−1)(0−2)(0−3) . Sketch the points with scatter plot and graph the polynomial.

6. from math import exp

data = [(-1,exp(-1)), (0,exp(0)), (1,exp(1))]

def L0(x):

product = 1

x0 = data[0][0]

k = 0

for (xi,yi) in data:

if not k == 0:

product *= (x-xi) / (x0-xi)

k += 1

return product

print (L0(0.32))

7. See notes.

8. (a) Differentiate with respect to x.

(b) These formulas define u′′(x) as a piecewise linear function. It is your job to show that the pieces
meet up continuously.

(c) Integrate with respect to x.

(d) Check that the piecewise cubic function u(x) is continuous. You must check that there are no
gaps—each piece passes through two data points.

(e) The desired system of equations for u′′(xi) is h
6u
′′(xi−1) + 2h

3 u
′′(xi) + h

6u
′′(xi+1) = yi+1−2yi−yi−1

h

(f) This computation is easy if you understand the notation.

(g) See p. 238 in Olver’s notes.

(h) See p. 238 in Olver’s notes.

9. a1 = 7, b1 = 8, c1 = 4, d1 = 1.

10. (a) This is the constant multiple rule for antidifferentiation.

(b) p1(x) = f(a)L0(x)+f(b)L1(x) = x−b
a−bf(a)+ x−a

b−a f(b) = 1
b−a ((b− x)f(a) + (x− a)f(b)) . Integrating

the interpolation polynomial gives
∫ b
a
f(x)dx ≈ b−a

2 (f(a) + f(b)) . This is of course the Trapezoid
rule.

Page 14

	week 4
	week 5
	week6
	week 7
	week 8
	week 9
	week 10
	week 11
	week 12
	week13
	week 14
	week 15
	I T
	II

