HW QUIZ 1

1. (8 points) Suppose the spread of an illness similar to measels is modelled by the following rate equations:

$$
\begin{aligned}
& S^{\prime}=-.0002 S I \\
& I^{\prime}=.0002 S I-.08 I \\
& R^{\prime}=.08 I
\end{aligned}
$$

(a) Roughly how long does someone who catches the illness remain infected?
(b) How large does the susceptible population have to be in order for the illness to take hold-that is for the number of cases to increase? Explain your reasoning. during the next 24 hours?
(c) Approximate $S(1), I(1), R(1)$ using $\Delta t=1$ when intial values are $S=10000, I=500, R=800$.
2. (2 points) The following program prints 4 lines of output. What are they?

```
a = 0
b = 0
for k in range(3):
    a += 1
    b += a
    print(a,b)
print(2*a+b)
```

HW QUIZ 2 (with computer)

1. (6 points) How would you modify SIRVALUE to calculate estimates for S , I , and R when $t=120$ days and $\Delta t=0.25$. Do it; what do you get? Give your approximate answers rounded to two decimal places.
2. (3 points) The following program prints 4 lines of output. What are they?
```
a = 10
b = 0
for k in range(3):
    a += 1
    b -= a
    print(a,b)
print(2*a+b)
```

3. (2 points) Modify your SIRVALUE code to approximate $y(2.5)$ when $y(t)$ solves the IVP

$$
y^{\prime}=.2 y(5-y), y(0)=1
$$

. How small must Δt be in order that your approximation of $y(2.5)$ have two decimal places of accuracy. Explain with a table of approximations of $y(2.5)$ for different δt values.

HW QUIZ 3

1. (5 points) Construct the Euler approximation to $y(1)$ with $\Delta t=\frac{1}{2}$ and when the function $y(t)$ that solves the IVP:

$$
y^{\prime}=\frac{4}{1+t^{2}}, y(0)=0
$$

2. (5 points) Find two successive approximations to $\sqrt{2}$ using the BABYLON program, an algorithm realized by a FOR loop with a single line that reads

$$
x=(x+2 / x) / 2
$$

(You should start with $x=1$).

HW QUIZ 4

1. (5 points) Find the largest interval in which x must lie in order to approximate 900 with relative error at most 10^{-3}.
2. (5 points) Find the maximum $\max _{0 \leq x \leq 4}|f(x)|$ for
$f(x)=x^{2} \sqrt{(4-x)}$.

HW QUIZ 5 (with computer)

1. (10 points) Use the Bisection method to find a solution accurate to within 10^{-2} for $x^{4}-2 x^{3}-4 x^{2}+$ $4 x+4=0$ on the interval [0, 2]. Explain why your solution attains this accuracy.

HW QUIZ 6

1. Let $g(x)=2^{-x}$.
(a) (3 points) Determine an interval $[a, b]$ on which the fixed point iteration $x=g(x)$ will converge.
(b) (3 points) Draw a cobweb (staircase) diagram to approximate the fixed point $x=g(x)$.
(c) (3 points) Find x_{2} by applying FPI to $x=g(x)$ with initial guess $x_{0}=0$.
(d) (1 point) Estimate the number of iterations necessary in part (c) to approximate the fixed point accurate to within 10^{-2}. (HINT: $\ln 2 \approx 0.69$). Explain.

HW QUIZ 7

1. (10 points) Let $f(x)=-x^{3}$ and $x_{0}=-1$. Use Newton's method to find x_{1}, and x_{2}.

HW QUIZ 8

1. (10 points) Solve the system $\left[\begin{array}{ll}3 & 7 \\ 6 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}1 \\ -11\end{array}\right]$ by finding the LU factorization and then carrying out forward and backwards substitution.

HW QUIZ 9

1. (4 points) When $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 1 & 1\end{array}\right]$ and $b=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$, use the normal equations to find the least squares solution of $A x=b$ when
2. (3 points) Write one line of code to replace the third row of a given matrix A by itself minus 4 times the first row.
3. (3 points) Find P, L, and U to decompose $A=\left[\begin{array}{ccc}2 & 1 & 5 \\ 4 & 4 & -4 \\ 1 & 3 & 1\end{array}\right]$ as $P A=L U$ using partial pivoting.

HW QUIZ 10

1. (5 points) (a) Find the $Q R$ factorization of the matrix $A=\left[\begin{array}{cc}6 & 2 \\ 3 & -6 \\ 2 & 3\end{array}\right]$.
(b) Use the factorization from part (a) to find the least squares solution to $A x=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.
2. (5 points) Compute \vec{x}_{1} when $\vec{x}_{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ using the Jacobi method to approximate a solution to $A x=b$ when $A=\left[\begin{array}{cc}3 & -1 \\ -1 & 2\end{array}\right]$ and $b=\left[\begin{array}{l}5 \\ 4\end{array}\right]$. Compute the residual and the relative backward error for the approximation \vec{x}_{1}.

HW QUIZ 11

1. (5 points) Given the 1000×1000 matrix A, approximate how many flops are required to solve the 500 problems $A x=b_{1}, A x=b_{2}, \ldots, A x=b_{500}$.
2. (5 points) Let

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 3 & 1 & 0 \\
4 & 1 & 2 & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(a) Solve $A x=b$ when $b=\left[\begin{array}{l}1 \\ 1 \\ 4 \\ 5\end{array}\right]$.
(b) Solve $A x=b$ when $b=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$.

HW QUIZ 12

1. (10 points) Let $A=\left[\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right]$ and $b=\left[\begin{array}{l}-4 \\ -1\end{array}\right]$. Solve $A x=b$ using $P A=L U$ factorization with partial pivoting and two-step back substitution.

HW QUIZ 13

1. (10 points) Apply one step of Newton's Method with $x_{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ to find x_{1} the approximate solution to the system

$$
\left\{\begin{array}{l}
4 u^{2}-20 u+\frac{1}{4} v^{2}=-8 \\
\frac{1}{2} u v^{2}+2 u-5 v+8=0
\end{array}\right.
$$

HW QUIZ 14

1. (5 points) Given the points $(1,1)$ and $(3,2)$. Use Newton's divided differences to find the interpolating polynomial of the points.

HW QUIZ 15 (with computer)

1. (5 points) Given the integral $\int_{0}^{2} 2 x^{3} \mathrm{~d} x$.
(a) Compute the composite Trapezoid rule with $m=40$ and $m=80$ intervals to approximate the integral using 4 decimal places. Compare with the exact value.
(b) Verify the composite error formula $E=-\frac{(b-a) h^{2}}{12} f^{\prime \prime}(c)$ in your approximation in part (a).

HW QUIZ 16 (with computer)

1. (5 points) Use Euler's method and step size $h=0.05$ to approximate $y(0.35)$ when y solves the IVP $y^{\prime}=4 t-2 y, y(0)=1$. Round to four decimal places.
2. (5 points) Compute the least squares solution and the 2-norm error of $\left[\begin{array}{cccc}4 & 2 & 3 & 0 \\ -2 & 3 & -1 & 1 \\ 1 & 3 & -4 & 2 \\ 1 & 0 & 1 & -1 \\ 3 & 1 & 3 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=$ $\left[\begin{array}{c}10 \\ 0 \\ 2 \\ 0 \\ 5\end{array}\right]$
. Round all answers to four decimal places.
