1. Use Newton's method to approximate a of the nonlinear system $0=f_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{1}-x_{2}+1$ and $0=f_{2}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-1$.
(a) Find x_{1} and x_{2} by hand when $\vec{x}_{0}=(1,1)^{T}$.
(b) Write code to find x_{4} when $\vec{x}_{0}=(1,1)^{T}$. Does the FPI converge? If so, to what?
(c) Find x_{1} by hand when $\vec{x}_{0}=(-6,2)^{T}$. Use Numpy to approximate x_{5}. Does the FPI converge? If so, to what?
(d) What goes wrong when the intial guess is $\vec{x}_{0}=(0,0)^{T}$?
2. Use Newton's method to approximate a of the nonlinear system $0=f_{1}\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-1$ and $0=f_{2}\left(x_{1}, x_{2}\right)=x_{2}-x_{1}^{3}$.
(a) Find x_{1} by hand when $\vec{x}_{0}=(1,2)^{T}$.
(b) Write code to find x_{5} when $\vec{x}_{0}=(1,2)^{T}$. Does this FPI converge? If so, to what?
(c) Find x_{1} by hand when $\vec{x}_{0}=(2,0)^{T}$. Use Numpy to approximate x_{6}. Does this FPI converge? If so, to what?
3. textbook: 1,2 .
