1. Let $A=\left[\begin{array}{ccc}-1 & 2 & 2 \\ -1 & -4 & -2 \\ -3 & 9 & 7\end{array}\right]$.
(a) Find the eigenvalues and eigenvectors of A by hand.
(b) Use the power method by hand with initial guess $v_{0}=(1,0,0)$ to find v_{1} and λ_{1}, an approximation to the dominant eigenvector and eigenvalue.
(c) Use the inverse power method by hand with $\alpha=0$ and with initial guess $v_{0}=(1,0,0)$ to find v_{1}, an approximation to the eigenvector corresponding to the smallest eigenvector.
(d) Use the inverse power method by hand with $\alpha=-1$ and with initial guess $v_{0}=(1,0,0)$ to find v_{1}, an approximation to the eigenvector with corresponding eigenvalue closest to -1 .
2. Let $A=\left[\begin{array}{ccc}-1 & 2 & 2 \\ -1 & -4 & -2 \\ -3 & 9 & 7\end{array}\right]$.
(a) Use the power method with initial guess $v_{0}=(1,0,0)$ to find v_{11} and λ_{11}.
(b) Use the inverse power method with $\alpha=0$ and with initial guess $v_{0}=(1,0,0)$ to find v_{9} and λ_{9}.
(c) Use the inverse power method with $\alpha=-1.7$ and with initial guess $v_{0}=(1,0,0)$ to find v_{8} and λ_{8}.
3. Let $A=\left[\begin{array}{ll}7 & 4 \\ 3 & 6\end{array}\right]$.
(a) Find the eigenvalues and eigenvectors of A by hand.
(b) Use the power method by hand with initial guess $v_{0}=(1,1)$ to find v_{1} and λ_{1}, an approximation to the dominant eigenvector and eigenvalue.
(c) Use the inverse power method by hand with $\alpha=0$ and with initial guess $v_{0}=(1,1)$ to find v_{1} and λ_{1}, an approximation to the smallest eigenvalue and its corresponding eigenvalue.
4. Let $A=\left[\begin{array}{ll}7 & 4 \\ 3 & 6\end{array}\right]$.
(a) Use the power method by hand with initial guess $v_{0}=(1,1)$ to find v_{18} and λ_{18}, an approximation to the dominant eigenvector and eigenvalue.
(b) Use the inverse power method by hand with $\alpha=0$ and with initial guess $v_{0}=(1,1)$ to find v_{13} and λ_{13}, an approximation to the smallest eigenvalue and its corresponding eigenvector.
5. Find the singular values of each of the following matrices.
(a) $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -2\end{array}\right]$
(b) $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$
(c) $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$
6. Find the SVD of each of the following matrices.
(a) $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -2\end{array}\right]$
(b) $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$
(c) $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 1 & 0\end{array}\right]$
7. textbook exercises: 2,3 .
