1. Given the system of equations

$$
\begin{aligned}
3 x_{1}+x_{2}-x_{3} & =3 \\
x_{1}-4 x_{2}+2 x_{3} & =-1 \\
-2 x_{1}-x_{2}+5 x_{3} & =2
\end{aligned}
$$

(a) Use Jacobi to compute \vec{x}_{1} by hand when $\vec{x}_{0}=(0,0,0)$.
(b) Use Gauss-Seidel to compute \vec{x}_{1} by hand when $\vec{x}_{0}=(0,0,0)$.
2. Given the system of equations

$$
\begin{aligned}
3 x_{1}+x_{2}-x_{3} & =3 \\
x_{1}-4 x_{2}+2 x_{3} & =-1 \\
-2 x_{1}-x_{2}+5 x_{3} & =2
\end{aligned}
$$

(a) Use Jacobi to compute \vec{x}_{7} using numpy when $\vec{x}_{0}=(0,0,0)$. Round your answer to five decimal places. Guess if this FPI converges. To what? Is it the solution to $A x=b$?
(b) Use Gauss-Seidel to compute \vec{x}_{7} using numpy when $\vec{x}_{0}=(0,0,0)$. Round your answer to five decimal places.
(c) Use SOR with $\omega=1.2$ to compute \vec{x}_{4} using numpy when $\vec{x}_{0}=(0,0,0)$. Round your answer to five decimal places.
3. Given the system of equations

$$
\begin{aligned}
3 x_{1}+x_{2}-x_{3} & =3 \\
x_{1}-4 x_{2}+2 x_{3} & =-1 \\
-2 x_{1}-x_{2}+5 x_{3} & =2
\end{aligned}
$$

(a) Here is yet another FPI $x=g(x)=(I-A) x+b$.
(b) Verify that a fixed point of this FPI is a solution to $A x=b$.
(c) Find \vec{x}_{1} and vecx x_{7} when $\vec{x}_{0}=(0,0,0)$. (write your own python code to find \vec{x}_{7}).
(d) What is happening with this FPI sequence?
4. textbook exercises $2,3,6$.

