1. Find the LU factorization of the following matrices A.
(a) $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & -1 \\ -3 & 1 & 1\end{array}\right]$.
(b) $A=\left[\begin{array}{cc}1 & 1 \\ 3 & -4\end{array}\right]$.
2. Use the previous LU factorization of the matrices A to solve the systems below. No credit will be given for any other method.
(a)

$$
\begin{aligned}
x+2 y-z & =3 \\
2 x+y-2 z & =3 \\
-3 x+y+z & =-6 .
\end{aligned}
$$

(b)

$$
\begin{array}{r}
x_{1}+x_{2}=3 \\
3 x_{1}-4 x_{2}=2
\end{array}
$$

3. Write code to eliminate in the first column of a 100×100 matrix without pivoting and using one loop.
4. Use $P A=L U$ factorization to solve the following systems. No credit will be given for any other method.
(a)

$$
\begin{array}{r}
3 x+y+2 z=0 \\
6 x+3 y+4 z=1 \\
3 x+y+5 z=3 .
\end{array}
$$

(b)

$$
\begin{aligned}
3 x_{1}+7 x_{2} & =1 \\
6 x_{1}+x_{2} & =-11
\end{aligned}
$$

5. (a) Find the $P A=L U$ factorization of $A=\left[\begin{array}{ccc}2 & 1 & 5 \\ 4 & 4 & -4 \\ 1 & 3 & 1\end{array}\right]$.
(b) Solve $A x=b=\left[\begin{array}{l}5 \\ 0 \\ 6\end{array}\right]$ using the above $P A=L U$ factorization.
6. (a) Show that $A=\left[\begin{array}{cc}1 & 2 \\ 3 & 10\end{array}\right]$ is not symmetric.
(b) Show that $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right]$ is symmetric but is not positive definite.
(c) Show that $A=\left[\begin{array}{cc}1 & 3 \\ 3 & 10\end{array}\right]$ is symmetric but is not positive definite.
7. Find the Cholesky factorization, $A=G G^{T}$, of each of the following symmetric, positive definite matrices using the algorithm on p. 116.
(a) $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 8\end{array}\right]$
(b) $A=\left[\begin{array}{cc}25 & 5 \\ 5 & 26\end{array}\right]$
8. Use the previous Cholesky factorization and then forward and back substitution to solve

$$
\begin{array}{r}
x_{1}+2 x_{2}=4 \\
2 x_{1}+8 x_{2}=2
\end{array}
$$

(No credit will be given for any other method.)
9. Find the Cholesky factorization, $A=G G^{T}$, of the symmetric, positive definite matrices $A=\left[\begin{array}{lll}9 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 8\end{array}\right]$ using $G=L D^{\frac{1}{2}}$.
10. Given $A=\left[\begin{array}{cc}1 & 1 \\ 1 & 1.0001\end{array}\right]$ and $B=\left[\begin{array}{cc}.0001 & 1 \\ 1 & 1\end{array}\right]$.
(a) Roughly describe why matrix A is ill-conditioned and matrix B is well-conditioned.
(b) Use the numpy command cond to approximate the norm 2 condition numbers $\kappa_{2}(A)$ and $\kappa_{2}(B)$. Does the numpy approximate fit your rough idea above?
11. Find the norms $\|A\|_{2}=\lambda_{1}$ and the condition numbers $\kappa(A)=\frac{\lambda_{1}}{\lambda_{2}}$ of the following positive definite matrices (by hand):
(a) $A=\left[\begin{array}{cc}100 & 0 \\ 0 & 2\end{array}\right]$.
(b) $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$.
(c) $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 1\end{array}\right]$.
12. Find the norms $\|A\|_{2}$ and the condition numbers $\kappa(A)$ of the following positive definite matrices (by hand) from $\sqrt{\lambda_{1}\left(A^{T} A\right)}$ and $\sqrt{\lambda_{n}\left(A^{T} A\right)}$:
(a) $A=\left[\begin{array}{cc}-2 & 0 \\ 0 & 2\end{array}\right]$.
(b) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$.
(c) $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$.
13. Given the ill-conditioned matrix $A=\left[\begin{array}{cc}1 & 1 \\ 1 & 1.0001\end{array}\right]$.
(a) Solve $A x=b$ for $b=\left[\begin{array}{l}2 \\ 2\end{array}\right]$.
(b) Solve $A x=b$ for $b=\left[\begin{array}{c}2 \\ 2.0001\end{array}\right]$.
(c) You should see that the solutions, x, to this ill-conditioned problem are very sensitive to small changes in the input b. There is no robust algorithm.
14. Even well conditioned problems can give errors. Given $B=\left[\begin{array}{cc}.0001 & 1 \\ 1 & 1\end{array}\right]$.
(a) Solve $B x=b$ for $b=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ using no pivots with three digits of accuracy.
(b) Solve $B x=b$ for $b=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ using partial pivoting with three digits of accuracy.
15. The system $\left[\begin{array}{cc}1 & 2 \\ 1.0001 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}3 \\ 3.0001\end{array}\right]$ has one solution $x=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Suppose $\hat{x}=\left[\begin{array}{c}3 \\ -0.0001\end{array}\right]$ is the approximate solution after running some algorithm.
(a) Compute the residual $\hat{r}=b-A \hat{x},\|\hat{r}\|_{\infty}$, and $\|\hat{r}\|_{2}$.
(b) Compute the relative error in the residual, $\frac{\|\hat{\hat{r}}\|_{2}}{\|b\|_{2}}$. You may use numpy's LA.norm(r) command.
(c) Compute the relative forward error $\frac{\|x-\hat{\hat{x}}\|_{2}}{\|x\|_{2}}$.
(d) Verify the bound $\frac{\|x-\hat{x}\|}{\|x\|} \leq \kappa(A) \frac{\|\hat{r}\|}{\|b\| \|}$. (you may use numpy's LA.cond(A) command.)
16. TEXTBOOK EXERCISES: $1,3,4,5$.

