1. Determine if each function has a unique fixed point in the given interval.
(a) $g(x)=1-\frac{x^{2}}{4}$ on $[0,1]$.
(b) $g(x)=2^{-x}$ on $[0,1]$.
(c) $g(x)=\frac{1}{x}$ on $[0.5,5.2]$.
2. Use FPI when $g(x)=-4+4 x-\frac{x^{2}}{2}$. Find the actual errors and the actual relative errors for each iterate.
(a) Find $x_{1}, x_{2}, x_{3}$ when $x_{0}=1.9$.
(b) Find $x_{1}, x_{2}, x_{3}$ when $x_{0}=3.8$.
(c) Use the FPI theorem to make conclude what will happen in these FPI sequences.
3. Use FPI when $g(x)=0.5 x+1.5$. Find the actual errors and the actual relative errors for each iterate.
(a) Find $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ when $x_{0}=4$.
(b) Find the fixed point (exactly) with your bare hands.
(c) Can FPI be used to find a fixed point of $g(x)=x^{2}+x-4$. Explain.
4. Make cobweb (staircase) diagrams for each of the following.
(a) $g(x)=\sqrt{6+x}, x_{0}=7$.
(b) $g(x)=1+\frac{2}{x}, x_{0}=4$.
(c) $g(x)=\frac{x^{2}}{3}, x_{0}=3.5$.
(d) $g(x)=-x^{2}+2 x+2, x_{0}=2.5$.
5. $f(x)=x \sin x$ has a root $x^{*}$ between $a=2$ and $b=4$ because it is continuous and
(a) Use the Bisection Method for $f, a$ and $b$ to find $x_{8}$.
(b) Use the Bisection error formula to find an error bound for your approximate root $x_{8}$.
(c) How many steps of Bisection are necessary to get 11 digits of accuracy after the decimal place?
6. Let $f(x)=e^{x}-x-2$.
(a) Find $a$ and $b$ so that $f(a) \cdot f(b)<0$.
(b) Use the Bisection Method for $f, a$ and $b$ to find $x_{8}$.
(c) Use the Bisection error formula to find an error bound for your approximate root $x_{18}$.
(d) How many steps of Bisection are necessary to get 9 digits of accuracy after the decimal place?
7. (a) Use Newton's method to find the approximation $x_{3}$ to $x^{*}=\sqrt{5}$ when $x_{0}=2$. Give your answer with 12 decimal places of accuracy. Explain how you used Newton's.
(b) Use the Secant Method to find the approximate roots $x_{2}, x_{3}$, and $x_{4}$ to $f(x)=x^{3}-3 x+2$ when $x_{0}=-2.6$ and $x_{1}=-2.4$. Give your answers with four places of accuracy after the decimal.
8. (a) Use Newton's method to find the approximation $x_{11}$ to a root of $f(x)=x^{3}-3 x-2$ when $x_{0}=2$. Give your answer with 10 decimal places of accuracy.
(b) Repeat the above problem with different initial approximations $x_{0}=-3,-2,-1,0,1$, and then 3 . Make a rough sketch of $f(x)=x^{3}-3 x-2$ to explain the different convergence speeds.
9. TEXTBOOK EXERCISES: $1,3,5,6,15$.
