1. Use the Intermediate Value Theorem to show that $f(x)=x^{2}-\frac{1}{x}-3$ has a root in the interval [1.5, 2$]$.
2. Suppose $f(2)=6$, and $0.4 \leq f^{\prime}(x) \leq 0.5$ for x in [2, 2.2]. Use the MVT to estimate $f(2.2)$.
3. Consider $f(x)=\frac{x}{x^{2}+1}$. In which intervals does f increase. In which intervals does f decrease. Find the maximum and minimum values of f in $[-10,10]$.
4. Find the maximum and minimum values of $f(x)=2 x^{3}-3 x^{2}-12 x+8$ on each of the following intervals, $[-2.5,4]$ and then $[-2,3]$ and then $[-2.25,3.75]$.
5. Find the Taylor polynomials $T_{2}(x)$ and $T_{3}(x)$ for $f(x)=1+x+x^{2}+x^{3}+x^{4}$ in powers of x.
6. Find the Taylor series for $f(x)=\sin (3 x)$ in powers of x.
7. Consider $f(x)=\sqrt{x}$ on the interval $1 \leq x \leq 1+d$. Find d small enough so that $T_{2}(x)$ the second-degree Taylor polynomial at $x=1$, approximates $f(x)$ on $[1,1+d]$ with an error at most 0.1 How about with an error .001?
8. Find the number(s) c referred to in the MVT for $f(x)=\sqrt{x}$ over $[0,4]$.
9. Use the onion method to evaluate $P(3)$ when $P(x)=x^{4}+x^{3}-13 x^{2}-x-12$.
10. Find the relative and approximate error when w is used to approximate v.
11. $v=2.71828182, w=2.7182$
12. $v=98350, w=98000$
13. $v=.0000068, w=.000006$
14. Do end of Chapter 1 exercise in section $1.4: 0,1,2,3$.
