Name:

- 1. (9 points) Consider the equation $x^4 = x^3 + 10$.
 - (a) Find an interval [a, b] of length one inside which the equation has a solution.
 - (b) Starting with [a,b] from part (a), how many steps of the Bisection Method are need to approximate the root within 10^{-7} ?
 - (c) Use Newton's method to approximate a root of the equation by computing x_1 when $x_0 = 1$.

(a)
$$[2,3]$$
 or $[-2,-1]$
(b) $\frac{b-a}{2^{n+1}} \times \frac{1}{2} \cdot 10^{\frac{1}{7}} \longrightarrow \frac{1}{2^n} \times 10^{\frac{1}{7}}$ about $n=25$
(c) $f(x) = x^4 - x^3 - 10$ $f'(x) = 4x^3 - 3x^2 \longrightarrow x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1 - \frac{10}{1} = 11$

2. (3 points) Find the forward and the backward error for the approximate root $x_a = \frac{5}{4}$ of f(x) = 3x - 2.

forward
$$|x_a-r|=|\frac{\pi}{4}-\frac{2}{3}|=\frac{\pi}{12}$$

backward $|f(x_a)|=\frac{\pi}{4}$

- 3. (10 points) Given the matrix $A = \begin{bmatrix} 2 & 4 \\ 8 & 17 \end{bmatrix}$.
 - (a) Find the LU factorization of A.
 - (b) Solve the system Ax = b when $b = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$ by using the LU decomposition from (a) and then carrying out the two-step back substitution.

(b)
$$Lc = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$$
 $c_1 = 2$, $c_2 = 3$
 $Ux = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ $x_2 = 3$, $x_1 = -5$

4. (6 points) In this question you will use Newton's method to approximate the root of $f(x) = x^2$ with initial guess $x_0 = 1$. Find the following approximations

(a)
$$x_1$$

(b)
$$x_2$$

(c)
$$x_{25}$$
.

$$x_{i+1} = x_i - \frac{f(x_i)}{f(x_i)} = x_i - \frac{x_i^2}{2x_i} = \frac{1}{2}x_i$$

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{4} = \frac{1}{2^2}$ (c) $\frac{1}{2^{25}}$

5. (6 points) Which of the following three fixed-point iterations converge to $\sqrt{5}$? Rank the ones converge from fastest to slowest. Explain.

(a)
$$x \to \frac{4}{5}x + \frac{1}{x}$$

(b)
$$x \to \frac{x}{2} + \frac{5}{2x}$$

from fastest to slowest. Explain:

(a)
$$x \to \frac{4}{5}x + \frac{1}{x}$$
(b) $x \to \frac{x}{2} + \frac{5}{2x}$
(c) $x \to \frac{x+5}{x+2}$.

DOES NOT CONV TO $\sqrt{5}$

(a)
$$g_1(x) = \frac{4}{5}x + \frac{1}{x}$$
 $\rightarrow g_1'(\sqrt{5}) = \frac{3}{5} \times 1$ converges

(b)
$$g_2(x) = \frac{x}{2} + \frac{5}{2x}$$
 $\rightarrow g_2'(s) = 0$ quadrahic canv.

6. (6 points) For each of the following, determine whether Fixed-Point Iteration of g(x) is locally convergent to r. Explain.

(a)
$$g(x) = \frac{(2x-1)}{x^2}, r = 1$$

(b)
$$g(x) = \cos x + \pi + 1, r = \pi$$

(c)
$$g(x) = e^{2x} - 1, r = 0.$$

(a)
$$g'(x) = \frac{2x^2 - 2x(2x-1)}{x^4} = \frac{2x - 2x^2}{x^4} = \frac{2 - 2x}{x^3}$$

 $g'(r) = g'(1) = 0$ Loc Conv

$$g'(\pi) = 0$$
 Loc Com

(c)
$$g'(x) = 2e^{2x}$$