Math 328 Exam 2 SOLUTIONS

If you run out of room for an answer, continue on the back.

Name: ____

- 1. (10 points) Given $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$.
 - (a) Find $||A||_{\infty}$
 - (b) Find the spectral radius of A.
 - (c) Find all fixed points u^* of the linear iterative system $u^{(k+1)} = Au^{(k)}$.
 - (d) Is the linear iterative system $u^{(k+1)} = Au^{(k)}$ stable? Use part (b) to verify your answer. ANSWER:
 - (a) 3
 - (b) 3
 - (c) all points on line y = x.
 - (d) no the fixed points are each unstable since the spectral radius is greater than 1.
- 2. (10 points) Factor A = QR when $A = \begin{bmatrix} 2 & -2 & 18 \\ 2 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix}$. ANSWER: $A = QR = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 & 12 \\ 0 & 3 & -12 \\ 0 & 0 & 6 \end{bmatrix}$.
- 3. Find and classify as stable (or unstable) all fixed points of the linear iterative system $u^{(k+1)} = Tu^{(k)}$ when T is the matrix $T = \begin{bmatrix} .6 & .2 \\ .2 & .6 \end{bmatrix}$.

ANSWER: There is only one fixed point $u^* = (0, 0)^T$. It is stable since the spectral radius is 0.8 < 1.

- 1. (10 points) Approximate solutions to the system Ax = b using the Jacobi iteration method with $u^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 - $\begin{bmatrix} 0\\0\\0 \end{bmatrix} \text{ when } A = \begin{bmatrix} 3 & -1 & 1\\3 & 6 & 2\\3 & 3 & 7 \end{bmatrix} \text{ and } b = \begin{bmatrix} 1\\0\\4 \end{bmatrix}.$
 - (a) Find $u^{(2)}$
 - (b) Find $u^{(16)}$
 - (c) Use parts a) and b) to approximate a solution.

ANSWER:

(a)
$$\begin{bmatrix} 0.14285714 \\ -0.35714286 \\ 0.42857143 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0.03508768 \\ -0.23684257 \\ 0.65789422 \end{bmatrix}$$

(c) something close to $u^{(16)}$ is acceptable since it seems that this choice of seed converges in Jacobi iteration.

- 2. (10 points) Given $A = \begin{bmatrix} -2 & -3 \\ 6 & 7 \end{bmatrix}$. Use 8 iterations of the power method with $u^{(0)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to approximate λ_1 , the larger eigenvalue and its corresponding eigenvector v_1 . ANSWER: $\lambda_8 = 4.00036625565, v_8 = (-0.999969482421875, 1.999969482421875)$
- 3. (5 points) Find the approximate solution $u^{(2)}$ to the system u

$$u_1^3 - 3u_1u_2^2 - 1 = 0$$
$$3u_1^2u_2 - u_2^3 = 0$$

using Newton's method with $u^{(0)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. ANSWER: $u^{(4)} = \begin{bmatrix} -0.50820704 & -0.97605255 \end{bmatrix}$. Here is my code: import numpy as np

```
u = array([1,1],float) # inital condition
```

```
for k in range(10):
u = u - dot(inv(fPrime(u)), f(u))
print(k,u)
```