Math 328 Exam 2 SOLUTIONS
\square

> If you run out of room for an answer, continue on the back.

Name: \qquad

1. (10 points) Given $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$.
(a) Find $\|A\|_{\infty}$
(b) Find the spectral radius of A.
(c) Find all fixed points u^{*} of the linear iterative system $u^{(k+1)}=A u^{(k)}$.
(d) Is the linear iterative system $u^{(k+1)}=A u^{(k)}$ stable? Use part (b) to verify your answer.

ANSWER:
(a) 3
(b) 3
(c) all points on line $y=x$.
(d) no the fixed points are each unstable since the spectral radius is greater than 1.
2. (10 points) Factor $A=Q R$ when $A=\left[\begin{array}{ccc}2 & -2 & 18 \\ 2 & 1 & 0 \\ 1 & 2 & 0\end{array}\right]$.

ANSWER: $A=Q R=\frac{1}{3}\left[\begin{array}{ccc}2 & -2 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 2\end{array}\right]\left[\begin{array}{ccc}3 & 0 & 12 \\ 0 & 3 & -12 \\ 0 & 0 & 6\end{array}\right]$.
3. Find and classify as stable (or unstable) all fixed points of the linear iterative system $u^{(k+1)}=T u^{(k)}$ when T is the matrix $T=\left[\begin{array}{ll}.6 & .2 \\ .2 & .6\end{array}\right]$.
ANSWER: There is only one fixed point $u^{*}=(0,0)^{T}$. It is stable since the spectral radius is $0.8<1$.

1. (10 points) Approximate solutions to the system $A x=b$ using the Jacobi iteration method with $u^{(0)}=$ $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ when $A=\left[\begin{array}{ccc}3 & -1 & 1 \\ 3 & 6 & 2 \\ 3 & 3 & 7\end{array}\right]$ and $b=\left[\begin{array}{l}1 \\ 0 \\ 4\end{array}\right]$.
(a) Find $u^{(2)}$
(b) Find $u^{(16)}$
(c) Use parts a) and b) to approximate a solution.

ANSWER:

(a) $\left[\begin{array}{c}0.14285714 \\ -0.35714286 \\ 0.42857143\end{array}\right]$
(b) $\left[\begin{array}{c}0.03508768 \\ -0.23684257 \\ 0.65789422\end{array}\right]$
(c) something close to $u^{(16)}$ is acceptable since it seems that this choice of seed converges in Jacobi iteration.
2. (10 points) Given $A=\left[\begin{array}{cc}-2 & -3 \\ 6 & 7\end{array}\right]$. Use 8 iterations of the power method with $u^{(0)}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ to approximate λ_{1}, the larger eigenvalue and its corresponding eigenvector v_{1}.
ANSWER: $\lambda_{8}=4.00036625565, v_{8}=(-0.999969482421875,1.999969482421875)$
3. (5 points) Find the approximate solution $u^{(2)}$ to the system u

$$
\begin{array}{r}
u_{1}^{3}-3 u_{1} u_{2}^{2}-1=0 \\
3 u_{1}^{2} u_{2}-u_{2}^{3}=0
\end{array}
$$

using Newton's method with $u^{(0)}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
ANSWER: $u^{(4)}=\left[\begin{array}{ll}-0.50820704 & -0.97605255\end{array}\right]$. Here is my code:

```
import numpy as np
from numpy import array,dot
from numpy.linalg import inv
def f(u):
    f0 = u[0]**3 - 3*u[0]*u[1]**2 - 1
    f1 = 3*u[0]**2*u[1] - u[1]**3
    return array([f0,f1],float)
def fPrime(u):
    return array([[3*u[0]**2 - 3*u[1]**2, -6*u[0]*u[1]],
                [6*u[0]*u[1], -3*u[1]**2]],float)
u = array([1,1],float) # inital condition
for k in range(10):
    u = u - dot(inv(fPrime(u)), f(u))
    print(k,u)
```

