Chapter 14: Numerical Differentiation

Although we all remember from calculus how to analytically
evaluate derivatives of a function f(x), there are reasons to do this
numerically. To derive formulas for numerical differentiation the
basic tool is polynomial approximation. If a polynomial pp(x)
approximates a given function f(x) then p/,(x) approximates f(x).



Chapter 14: Numerical Differentiation

We will only cover section the Taylor series approach to
approximate the derivative in sections 14.1 and 14.2 this semester.
There is a fundamental difficulty with numerical differentiation in
that roundoff error and other high frequency noise are actually
enlarged by the process.



14.1 Deriving formulas using Taylor series

You should be able to derive the the two-point and the three-point
formulas with their orders of error using your knowledge of Taylor
series. You are not responsible for the five-point formula. Write
your own code to generate Table 14.1 on page 413. Do Exercise 1
in section 14.6.



14.1 Deriving formulas using Taylor series

» Two-point formula

f/(XO) _ f(XO + hl?’ — f(XO) + gf//(g)

» Three-point formula

f(XO + h) — f(Xo - h) _ izf”/

f'(x0) = T 5 (€)-

» Three-point formula for second derivative

" (x0) = fboth) = 2f,52<0) —flo=h) f;f(“(f).




14.1 Deriving formulas using Taylor series

» Order one: We say, "halve the stepsize h halve the error.”
» Order two: We say, "halve the stepsize h quarter the error.

» Write code to see how this works in practice.



14.2 Richardson Extrapolation

Richardson extrapolation is a simple, effective method for
generating higher order numerical methods from lower ones. Given
two methods of the same order, we can exploit the relationship
between their leading error terms in order to eliminate such a term.
We will demonstrate with an example.



14.2 Richardson Extrapolation

EXAMPLE: Use three-point approximate of ' and Richardson to
get a order 4 approximate.

» three-point f'(xg) = F(h) + Kh?

> three-point f'(xp) = F(g) + K(ﬁ)2 = F(ﬁ) + K%Q

4F( )

> Richardson mix: f/(xo) = FO) 4 gt



Chapter 15: Numerical Integration

The need to integrate a function f(x) arises often in mathematical
modeling. We seek approximations of the definite integral

b n
/ Fx)dx = S aif (x)
a =0

for a given finite interval [a, b] and integrable function f. The
numerical integration formula, often referred to as a quadrature
rule, has abscissae x; and weights a;. We will only cover sections
15.1 and 15.2 this semester.



15.1 Basic Quadrature Algorithms

In section 15.1 we derive the basic rules using polynomial

interpolation
b b
/ f(x)dx%/ Pn(x)dx.
a a

We will discuss in class how the "Rules” and "Errors” in the green
box on page 445 are derived from the Lagrange polynomials in
Chapter 10.



15.1 Basic Quadrature Algorithms

You should understand how the "Rules” and "Errors” are used in
Example 15.2 on page 446. You should be able to write Python
code to generate the same values from this example.



15.1 Basic Quadrature Algorithms

» Midpoint Rule: (b — a)f(%b), Error: %(b— a)3.
» Trapezoid Rule: %(f(a) + f(b)), Error: —%(b —a)3.
> Simpson's Rule: 252(f(a) + 4f(252) + f(b)), Error:

£(4)
géé) (b— a)°.




15.2 Composite Quadrature Algorithms

» Composite Trapezoid Rule:
b h
/ f(x)dx ~ 3 (f(a) +2f(t1) + 2f(t2) + ...+ f(t,—1 + f(b))

Error: — ful(zl') (b—a)h?.

» Simpson's Rule:

/a () ~

£(4)
Error: — lg(ép)(b — a)h*.

w| =

(f(a) + 4f(t1) + 2f(t) + 4f(t3) + ... + (b))




15.2 Composite Numerical Integration

You only need to know how the Composite Trapezoid, Composite
Midpoint, and Composite Simpson'’s rule are generated from the
basic algorithms in section 15.1. You should know how to use the
"Quadrature Errors Theorem” on page 453 but you need not know
how to derive these formulas. These formulas are good to have on
your formula sheet for the final exam. You should work out
Exercises 1,3, 5(a) from section 15.7. You are not responsible for
sections 15.3 — —15.6.



Chapter 16 Differential Equations

This is review of our work at the beginning of the semester
studying the SIR initial value problem (IVP or Initial Value
Problem). The SIR model of infectious disease is a nonlinear
system of differential equations. It is unsolvalbe in that we are
unable to write formulas S(t), /(t), and R(t) in terms of the basic
functions y = t2,y =sint,y = logt,... we learned in calculus.
Yet the existence and uniqueness theorem of differential equations
proves that there are functions S(t), /(t), and R(t).



Chapter 16 Differential Equations

Since we are unable to write formulas for S(t), /(t), and R(t), it
does not mean that we cannot solve them. We can approximate
these solutions. Solving such problems is one of the main reasons
you are taking math 328. The algorithms used to solve such IVPs
are ubiquitous in scientific computing. At the beginning of the
semester we used Euler's method to approximate S(t), /(t), R(t).
In this chapter we will see that there are better, i.e. higher order,
methods to approximate solutions to IVPs. We will study two such
methods: RK2 and RK4.



Chapter 16 Differential Equations

You should only use Python to generate table 16.2 on page 496.
and Figure 16.5 on page 497. You should know that Euler’'s method
is an order 1 method, RK2 is an order 2 method, and RK4 is an
order 4 method. If you have not already done so please watch the
Lecture 2 video from Arthur Mattuck’s MIT Differential Equations
course (there is a link to this video on our coursepage). You need
not read this chapter or do any exercises. Be organized and
systematic when doing Euler's, RK2, or RK4 by hand. As always
make a couple iterations by hand before employing a computer.



Section 16.1, 16.2, and 16.3

» Euler's Method is an order one method. If we cut the stepsize
in half then we will "roughly” cut the error in half.

» Trapezoid Rule (RK2) is an order two method. If we cut the
stepsize in half we will "roughly” cut the error by %.

» RK4 is obviously of 4th order. If we cut the stepsize h in half
using RK4 then the error will "roughly” be cut in %th.



Chapter 16 Differential Equations

You should memorize the orders of the three methods on the
previous slide. These are the only methods you will need for the
final exam. You have already used Euler's method extensively in
the SIR model. The other two methods are variants of Euler's
method. It is best to think of Euler's method as the blueprint for
the other two higher order methods as explained in Arthur
Mattuck's video from MIT on our coursepage.



