
Chapter 10: Polynomial Interpolation

Polynomial interpolants are rarely the end product of a numerical
process. Their importance is more as building blocks for other,
more complex algorithms in differentiation, integration, solutions of
differential equations, approximation theory in the large, . . . .
Interpolation is often used both to design a algorithm and to
analyze its convergence properties.



10.1: General approximation and interpolation

Interpolation is a special case of approximation.

I Data fitting (discrete): Given data (xi , yi ) find a reasonable
function v(x) that fits the data. If the data are acurate it may
make sense to interpolate the data with v(x).

I Approximating functions (continuous): For a complicated
function f (x) find a simpler function v(x) that approximates
f .



10.1: General approximation and interpolation

Why do we need interpolating functions v(x)?

I For prediction: if x is inside the domain of data points, we call
v(x) the interpolation value at x . Otherwise, we call it
extrapolation.

I For manipulation: like finding approximate derivatives or
integrals.

I For storage: It is usually easier to store v(x), rather than the
data points themselves.



10.1: General approximation and interpolation

We generally assume a linear form for all interpolating functions
v(x). We write

v(x) =
n∑

j=0

cjφj(x) = c0φ0(x) + . . .+ cnφn(x).

where {cj} are the unknown coefficients, or parameters,
determined by the data, and {φj(x)} are predetermined basis
functions. We are using the language and concepts from linear
algebra to describe interpolation. Linear algebra helps unify much
of numerical analysis.



10.1: General approximation and interpolation

I Our first goal in interpolation is to find the scalars {cj}.
I Use the interpolating linear combination and data points to

rewrite as a matrix equation.

I Note that we assume that the number of basis functions n + 1
is the same as the number of data points



10.1: General approximation and interpolation

There are many types of interpolation depending on the data.

I When {φj(x)} are polynomials, we say polynomial
interpolation.

I When {φj(x)} are trigonometric, we say trigonometric
interpolation.

I There is also piecewise interpolation.

I We will only consider polynomial interpolation in this course.



10.1: General approximation and interpolation

We will only consider polynomial interpolation in this course of the
following three types of basis polynomials {φj(x)}.

I Monomial Interpolation: pn(x) = c0 + c1x + c2x
2 + . . . cnx

n.

I Lagrange Interpolation:
pn(x) = y0L0(x) + y1L1(x) + . . .+ ynLn(x).

I Newton’s: pn(x) = c0 + c1(x − x0) + c2(x − x0)(x − x1) . . .+
cn(x − x0)(x − x1) . . . (x − xn−1).

I It is important to understand that each method leads to the
same answer. Yet, each method has its advantages. Some are
easier to compute while others are more useful theoretically.



10.2: Monomial interpolation

I Use the polynomials φ0(x) = 1, φ1(x) = x to approximate the
data (1, 1), (2, 3).

I Use the polynomials φ0(x) = 1, φ1(x) = x , φ2(x) = x2 to
approximate the data (1, 1), (2, 3), (4, 3).



10.2: Monomial interpolation

# ALGORITHM: Matrix interpolation p. 300

import numpy as np

A = np.array([[1,1,1],

[1,2,4],

[1,4,16]], float)

y = np.array([[1],

[3],

[3]],float) # initial condition

c = np.linalg.solve(A,y)

print(c)



10.2: Monomial interpolation

This method suggests a general way for obtaining the interpolating
polynomial p(x).

I Form the Vandermonde matrix and solve the linear system.

I The advantage of this approach is its simplicity.

I The disadvantage of this approach is that the Vandermonde
matrix X is often ill-conditioned.

I Moreover, this approach requires 2
3n

3 operations. We may be
able to do better?



10.3 Lagrange Interpolation

Use the lagrange polynomials

Lj(x) =
(x − x0) . . . (x − xj−1)(x − xj+1) . . . (x − xn)

(xj − x0) . . . (xj − xj−1)(xj − xj+1) . . . (xj − xn)

to interpolate in the previous examples.



10.4 Newton’s divided differences

Use Newton’s divided differences to interpolate in the previous
examples (by hand). You will not be required to code the Newton’s
divided differences algorithm in this course. Though if you
comfortable coding, it is a great exercise to try to cook up code to
compute the interpolating polynomial using Newton’s method.



10.5 Polynomial Interpolation Error

The error in polynomial interpolation is given by

f (x)− p(x) =
f (n+1)(ξ)

(n + 1)!
(x − x0)(x − x1) . . . (x − xn).

As it stands this formula is more or less useless in computing exact
error since we can rarely find ξ and evaluate f (n+1)(ζ). This error
formula can however often be used to bound the error in the
interpolation. You should understand this error formula and
understand its proof.



10.5 Polynomial Interpolation Error

The error in polynomial interpolation is given by

f (x)− p(x) =
f (n+1)(ξ)

(n + 1)!
(x − x0)(x − x1) . . . (x − xn).

You may expect that the higher the degree, the more accurate the
interpolating polynomial. This is not always true. Low order
approximations are often reasonable. High degree interpolants, on
the other hand, are expensive to compute and can be poorly
behaved, especially near the endpoints. Chapter 11 ”Piecewise
Polynomial Interpolation” partially resolves these issues by
interpolating in pieces with low degree polynomials.



10.5 Polynomial Interpolation Error

Assume that the polynomial p9(x) interpolates the function
f (x) = e−2x at the 10 evenly spaced points x = 0, 19 ,

2
9 , . . .

8
9 , 1.

Use the error formula to find an upper bound for the error
e9(0.5) = |f (0.5)− p9(0.5)|.


